First results of AIRS assimilation at

Thomas Auligné
Florence Rabier, Lydie Lavanant, Mohamed Dahoui

International TOVS Study Conference XIII 29th October 2003 Sainte Adele, Canada
AIRS (Atmospheric InfraRed Sounder) aboard AQUA platform:

2378 channels (3.74 → 15.4 µm)

1.1° FOV collocated with AMSU (golf ball)
Constant subset of 324 channels for center of every other golf ball (1/18 pixels)
Introduction

ARPEGE: global spectral model

T358, C2.4, 41 vertical levels

Associated grid: 23km (France) to 133km (antipodes)

Radiances / Tb observations
Introduction

EO
AQUA

NESDIS

Met Office

Météo-France D.R.

Radiance / Tb observations

4D-Var Data Assimilation
Screening (obs-fg)
Minimisation

First Guess

ARPEGE NWP operational model

6-hour assimilation cycling:
00, 06, 12, 18 UTC
Multi-incremental 4D-Var:
T107 & T161, 41 L
Introduction

EOS AQUA

NESDIS

Met Office

Météo-France D.B.

Radiances / Tb observations

4D-Var Data Assimilation
Screening (obs-fg)
Minimisation

First Guess

ARPEGE NWP operational model

Increments
Contents

A conservative assimilation suite
First impact study
Work under development
Conclusion and perspectives
Monitoring assimilation suite (a very conservative use of AIRS data)
✓ **Channel selection**

✓ Gross check: $150 < T_b < 350$ & $(\text{obs} - \text{fg}) < 20$

✓ First-guess check: $(\text{obs} - \text{fg})^2 < \alpha (\sigma_o^2 + \sigma_b^2)$

✓ Channels in O_3 and SW bands, over land, peaking above/near model cloud top (1hPa), at edges of scan are blacklisted

176 channels used
Mitch Goldberg cloud detection scheme: based on thresholds recomputed for ARPEGE model

- LW window channel: $T_b(965.43\text{ cm}^{-1}) > 270 \text{ K}$
- Model SST versus SW window channel (2616.095 cm$^{-1}$) (night only)
- Model SST versus predicted SST (from channels 918.65, 965.32, 1228.09, 1236.40 cm$^{-1}$)

VIS/NIR imager: less than 10 % cloud in pixel (day only)
Bias correction

Flat bias correction for each channel calculated over all active data.

Observation error estimation

Basic definition for σ_o:

- 0.6 K for upper temperature channels
- 1 K for lower temperature channels
- 2 K for water-vapor channels
Impact study

Period of 19 days: 2003.08.01 → 2003.08.19

CTRL = latest ARPEGE suite (including HIRS)

EXP = CTRL + AIRS (all data in 6h assimilation window) + more iterations in the 2nd 4D-Var minimisation
Geopotential Temperature

VERIF = ECMWF analysis

Forecast range

RMS_{CTRL} - RMS_{EXP} =

Geopotential

Temperature
VERIF = TEMP observations

Geopotential Temperature Humidity
Work under development

- Bias correction

→ Neural Network

PREDICTORS:
- P_s
- T_s
- Land/Sea mask
- Sat zenith angle
- Latitude
- Obs → T_b
- T profile
- Q profile
 (43 RTTOV levels)

LEARNING PROCESS

NEURAL NETWORK:
- Multi-layer perceptron

OBSERVED BIAS:
- Obs-Guess
Work under development

✓ Bias correction

→ Neural Network

PREDICTORS:

✓ Ps
✓ Ts
✓ Land/Sea mask
✓ Sat zenith angle
✓ Latitude
✓ Obs → Tb
✓ T profile
✓ Q profile
(43 RTTOV levels)

NEURAL NETWORK:

Multi-layer perceptron

PREDICTED BIAS:

Obs-Guess

SENSITIVITY:

For each predictor
"Conservative" assimilation

(only 176 channels, over clear pixels, flat bias correction)

is neutral/slightly positive for summer experiment

→ To be confirmed/improved with more extensive testing

Pre-operational by spring 2004
Perspectives

✓ New bias correction based on observation-analysis statistics near Radiosondes
 (Harris & Kelly or NN)

✓ Cloud detection on a channel basis instead of pixel
 (McNally & Watts, ECMWF)

⇒ Validation of cloud detection schemes with MODIS
 (Lydie Lavanant)
Perspectives

✓ 1D-Var studies for assimilation of AIRS cloudy radiances

ARPEGE stratiform & shallow convection diagnostic cloud scheme included: T, Q → Cloud Cover, Cloud Liquid Water & Ice

RTTOV-Cld radiative transfer model

✓ Investigate the benefit of cloud-cleared radiances in assimilation

✓ Data mining; usage/assimilation of PCA scores
Thank you for your attention