Use Of AMSU data in the UK Mesoscale Model

Brett Candy
Steven English, Richard Renshaw & Bruce Macpherson

Satellite Applications & Data Assimilation,
Met Office
Talk Outline

- Background and Motivation
- Limited Area Models at the Met Office
- Data Usage in the Mesoscale model
 - Source of observations
 - Data screening
- Bias Correction
- Impact Assessment
 - Method
 - Some results
- Future Work
Background

- Contribution of ATOVS in global NWP is very important

- To date effort has focused on assimilating satellite data in global NWP
 - *Some data types are currently precluded by timeliness*

- Initial tests of assimilating radiance data in the UK Mes encouraging
 - *Information retained in the short-range*

- But.....objectives are different.
 - *Key forecast parameters cloud cover, precip and surface temp*
UK Mesoscale Model 1

Model Domain
(Grid resolution=12km)

Background: Full Resolution AMSUB Imagery 89 GHz
UK Mesoscale Model 2

- Assimilation system:
 - incremental 3D-Var
 - assimilation window ±1½ hours
 - 2 hour data cutoff

- Observations:
 - radiosondes, air reps, wind profilers
 - land station reps, including visibility
 - satellite winds from Meteosat

- Additionally cloud cover and surface rainrate information is assimilated via a different route (i.e. outside of Var)
Data Acquisition

West Freugh

Local Passes
 HRPT

AAPP

1d data on HIRS grid

Comparisons for quality monitoring

UK Mes NWP

NESDIS
 1b data

AAPP

1d data on HIRS grid

Global NWP
ATOVS Data Use

- HIRS data not used
 - calibration problems associated with partial super swath
- AMSU data
 - Remapped to HIRS grid (allows use of same code as global)
 - AMSUB 183 GHz channels over sea only
- AMSU data screening
 - Liquid water test in AAPP → reject channels 4, 5 & 20
 - Ice test on 183 GHz channels → reject channels 19, 20
 - Rain test in AAPP → reject channels 4-8 & 18-20
- Data Thinning
 - 1 observation every 40 km. More weight given to clear & microwave clear scenes.
Tuning AMSU Observation Errors

AMSUB humidity errors
Reduced to 2K
Mid-lat Cyclone Case Study

AVHRR IR image

AMSU data screening

green: lwp yellow: precip
red: AMSUB cirrus
Bias Correction 1

- Airmass dependent predictors (Eyre, 1992)
 - problem in a LAM is to sample enough representative synoptic systems
 - could monitor departures over a year, assuming negligible instrument drift

- Current solution is to use global bias correction coefficients
 - assumes global and LAM NWP are unbiased
 - monitoring with sondes confirms this, at least for the troposphere
Bias Correction 2
AMSU channels Mean O-B Difference (K) over Mesoscale Domain

Uncorrected
Radiances

Corrected
Radiances

channel 5

channel 6

channel 18

channel 19

channel 20
Strategy for Assessing Impact

- Case study for poor operational forecast.
 - Convection over S.W. Britain
 - Rain forecasts compared to radar
- Set of cases containing range of weather situations observed over UK.
 - Chosen by forecaster
 - Subjective verification from station reports of 6 hour precip, surface temp & cloud cover
 - NOAA15 & 16 assimilated
- Extended Trial.
 - Ran for 1 month
 - Avoids spin-up problems
 - Near Real Time to get operational boundary conditions
 - Forecasts assessed by forecaster
 - NOAA16 & 17 assimilated
Convective Event 1

Observations Used

Channel 19

Channel 20

dark colours indicate

Negative o-b model too dry

Situation: Warm moist air moving northwards, mixing with cooler air at higher latitudes
Convective Event 2
Integrated Water Vapour Analysis

Region > 30kgm$^{-2}$

T+6 rainrate forecast

Radar
AMSU
No AMSU
Verification of Case Studies

- 6 cases improved, 6 cases worsened due to inclusion of AMSU
- Worse case highlights difficulties of using sparse verification sites for reporting precipitation

Hourly Precip, 0z 26th August 2001 T+6
Conclusions

- Operational in Mesoscale model from May 2003.
 - NRT trial positive for cloud & visibility.
 - Including a significant fog clearance case.
- Similar approach adopted for European model.
- Future Work
 - AMSUB at full resolution.
 » Issues for qc & bias correction.
 » Extend number of channels
 - Assimilation in regions of significant LWP.
 » Total humidity control variable.
 » 1D Var
 » 3D Var
Additional Slides
Local – Global BT Difference

Channel 15
HIRS

Channel 16

Channel 5
AMSU

~0.5 K

Channel 6

~0.02 K
Initialisation of the Mesoscale Model: Weights given to Var & MOPs data

VAR incs

Cloud incs

RainRate incs - from hourly fields