AIRS Level 2 Status

ITSC XIII
October 31, 2003
Montreal, Canada

Sung-Yung Lee(*), Evan Fishbein, Thomas Hearty,
Evan Manning, Edward Olsen
Jet Propulsion Laboratory
California Institute of Technology
* Sung-Yung.Lee@jpl.nasa.gov
Introduction to AIRS

- AIRS is a facility instrument on EOS Aqua
- AIRS is a grating spectrometer covering 650 to 2650 waver number, with gaps
 - Nominal Spectral Resolution of 1200 $\nu/\delta\nu$
 - 2378 channels, or spectral samples
 - Spatial resolution of 1.1 degree, 15km footprint at nadir
 - 4 additional VIS/NIR channels at higher spatial resolution
- AIRS operates with microwave sounders AMSU-A and HSB
 - AMSU-A is a copy of NOAA’s microwave sounder
 - HSB is functionally equivalent to NOAA’s humidity sounder AMSU-B
 - The three instruments are synchronized to have 3 by 3 AIRS/HSB footprints within an AMSU footprint
- Level 1b products were made public in early 2003
- Major/Core level 2 products
 - Temperature Profile
 - Water Vapor Profile
 - Surface skin temperature and other surface parameters
 - Cloud fraction and cloud top pressure
- Goddard DAAC is processing level 2 with version V3.0.8
 - Provisionally validated only for ocean profiles between 40N and 40S.
Main Contributors of Level 2 Algorithm

• Phill Rosenkranz of MIT
 – MW only retrieval algorithm and MW Forward Algorithm
• Catherine Gautier of UCSB
 – VIS/NIR algorithm
• Larrabee Strow of UMBC
 – AIRS Rapid Transmittance Algorithm
• Larry McMillin of NOAA/NESDIS
 – Brightness temperature tuning and local angle adjustment
• Mitch Goldberg of NOAA/NESDIS
 – Initial Regression Algorithm
• Joel Susskind of NASA/GSFC
 – Final retrieval algorithm and cloud clearing algorithm
• JPL is responsible for combining these algorithms into a unified team algorithm/software.
Data Flow (2)

Preliminary Cloud Cleared IR Radiances

IR Tuning
L. McMillin

IR Tuning Corrections

Initial Regression
M. Goldberg

Regression Level 2

Final Cloud Clearing
J. Susskind

RTA

Cloud Cleared IR Radiances

IR Tuning
L. McMillin

IR Tuning Corrections

Final Retrieval
J. Susskind

RTA

Final Level 2

Any Level 2

RTA
Rapid Transmittance Algorithm
L. Strow - IR
P. Rosenkranz - MW

Computed Radiances
All Level 2 Channels

- Spectrum is an observed profile for a night tropical case
- Temperature Sounding Channels: Blue
- Water Vapor Sound Channels: Green
- Window Channels: Red
- Ozone Sounding Channels: Cyan
- Methane Channels: Magenta
- CO Channels: Yellow
15 Micron CO2 Channels

- Temperature Sounding Channels: Blue
- Water Vapor Sound Channels: Green
- Window Channels: Red
- Ozone Sounding Channels: Cyan
- Methane Channels: Magenta
- CO Channels: Yellow
Longwave Window Channels

- Temperature Sounding Channels: Blue
- Water Vapor Sound Channels: Green
- Window Channels: Red
- Ozone Sounding Channels: Cyan
- Methane Channels: Magenta
- CO Channels: Yellow
Water Band Channels

- Temperature Sounding Channels: Blue
- Water Vapor Sound Channels: Green
- Window Channels: Red
- Ozone Sounding Channels: Cyan
- Methane Channels: Magenta
- CO Channels: Yellow
Shortwave Channels

- Temperature Sounding Channels: Blue
- Water Vapor Sound Channels: Green
- Window Channels: Red
- Ozone Sounding Channels: Cyan
- Methane Channels: Magenta
- CO Channels: Yellow

October, 2003
Temperature Weighting Functions

- AIRS radiances are sensitive to temperature at about 0.5 mb
- The weighting functions are computed for US Standard profile
AIRS radiances are sensitive to water vapor near 100 mb
Level 2 Files

• One set of files for a granule, 6 minutes of data
 – 45 AMSU scan lines of data, 135 scan line of AIRS/HSB data
 – 240 granules per day
 – All files are in swath format of HDF-EOS

• Level 2 standard file
 – Standard or core products
 – Temperature, Water vapor, and Ozone Profiles at 28 mandatory pressure levels
 – Surface and cloud properties

• Level 2 support file
 – Research products and intermediate products
 – Profiles at 100 pressure levels
 – Dependent on the standard file
 • Not all parameters in standard file are duplicated

• Cloud cleared radiance file
 – Radiances that would have been observed if there was no cloud
 – Available about 60% of AMSU footprints
 – May be available up to 80% cloud fraction.

• Browse Products
 – Raster image for daily maps of various AIRS products
 – Ascending and descending maps
Public Release of AIRS Level 2 Data

- Started in August 2003
 - Old data since September 2002 will be processed

- Level 2 Standard files
- Level 2 Support files
- Level 2 Cloud Cleared Radiance files
- Daily Browse products
 - Ascending/Descending maps at one degree by one degree resolution
 - Cloud Fraction, Surface Skin temperature, Total Precipitable Water Vapor, Total Ozone Burden, Total Cloud Liquid Water, Rain Rate, Emissivities at 800, 1000, 1200, and 2500 cm$^{-1}$

- Documentation

- Points of Contact
 - Atmospheric Dynamics Data Support Team at atmdyn-dst@daac.gsfc.nasa.gov
 - Dr. Edward Olsen at Edward.T.Olsen@jpl.nasa.gov

- Software for direct downlink data will be made available soon
Temperature Statistics vs ECMWF Analysis

- 7 Focus days (normally 48 days apart)
- Stable statistics over 9 months period
Sample Monthly Mean Products

- Simple gridded data based on January 2003 data
 - Separate maps for ascending (day) and descending (night) parts of orbit
 - One degree by one degree resolution
- For these maps, only the second half of RetQAFlag was checked
 - The first byte (bit numbers 8 through 15) was ignored
Monthly Mean Surface Skin Temperature
Descending Orbits - January 2003

Mean Total SST for Descending orbits of 01/2003

October, 2003
Monthly Mean Total Precipitable Water Vapor Descending Orbits - January 2003
Monthly Mean Cloud Fraction
Ascending Orbits - January 2003

Mean Total Cloud Fraction for Ascending orbits of 01/2003

October, 2003