An Alternate Algorithm to Evaluate the Reflected
Downward Flux Term for a Fast Forward Model

DS Turner

Meteorological Service of Canada
Downsview, Ontario, Canada

ITSC-XIII, Sainte-Adèle, Québec, CANADA 2003
at ITSC12 demonstrated the current algorithms for the attenuated reflected downward flux term did not work well for all the channels considered. In general, small biases existed only for high emissivities & low altitudes.

![Graph showing bias and standard deviation](image)

- \triangle secθ=1, \triangle secθ=1.25, \triangle secθ=1.5, \triangle secθ=1.75, \triangle secθ=2
- HIRS, AIRS
affects land retrievals where emissivities may be considerably less than .9 and p_s < 800hPa

require a fast scheme that is acceptable for a wider range of emissivities and surface pressures
Top of the atmosphere (TOA) radiance is the sum of 3 terms:

- attenuated surface emissions
- attenuated atmospheric upward emissions
- attenuated reflected downward flux

\[
<\mathcal{R}_s(\theta, p_s) >= \left(\varepsilon B(T(p_s)) \mathcal{H}(\theta, p_s) \right) + \left(\int_0^p B(T) d\mathcal{H}(p, \theta) \right) + \left(r \mathcal{H}(\theta, p_s) F'(p_s) \right)
\]

- \(p\) - pressure
- \(\theta\) - satellite zenith angle
- \(B\) - Planck function
- \(\mathcal{H}\) - \(p\) to TOA transmittance
- \(\varepsilon\) - surface emissivity
- \(r\) - surface reflectivity
- \(F'\) - downward flux

Subscript 's' denotes a topographical or cloud top surface

\(\mathcal{R}, \mathcal{H}, B, \varepsilon\) and \(r\) are functions of wavenumber

\[
\cdot <f> = \int_{\Delta\tilde{\nu}} \phi(\tilde{\nu}) f(\tilde{\nu}) d\tilde{\nu}
\]

\(\phi\) - response function

Variables of the form \(<f>\) are evaluated using MSC’s Fast Line-By-Line (FLBL) radiative transfer model
Attenuated reflected downward flux (ARDF) term is approximated as

\[
\langle r \mathfrak{F}(\theta, p_s) F^i(p_s) \rangle \approx r \langle \mathfrak{F}(\theta, p_s) F^i(p_s) \rangle \approx r \langle \mathfrak{F}(\theta, p_s) \rangle \langle F^i(p_s) \rangle
\]

\[
r \langle \mathfrak{F}^\phi \rangle = \frac{1}{\pi} \left[\sum_{k=1}^{\infty} \frac{\langle \mathfrak{F}^\phi_{k-1} \rangle - \langle \mathfrak{F}^\phi_k \rangle}{\langle \mathfrak{F}^\phi_{k-1} \rangle \langle \mathfrak{F}^\phi_k \rangle} \langle B_k \rangle \right] \langle \mathfrak{F}^\phi \rangle
\]

assume \(r \) is constant across \(\phi \)

- isotropic reflection for this work, ie \(r = (1-\varepsilon)/\pi \)

approximate \(F^i \) by replacing the angular integration of \(\mathfrak{F}^i \) with \(\mathfrak{F}(\phi) \), \(\text{sec}\phi \) is the diffusivity factor, usually set to 1.66

\(<a b> \) can be decomposed as \(<a> \)

RTTOV \(\mathfrak{F}(\phi) = \mathfrak{F}(\theta) \) \(\text{Saunders, 1999} \)

MSCFAST \(\mathfrak{F}(\phi) = \mathfrak{F}(1.66) \) \(\text{Garand, 1999} \)

requires 2\(^{nd}\) pass of transmittance model
past experience tells us that \(<a b>\) can not be decomposed as \(<a> \) (Turner, 2001)

test for reliability of the decomposition of the return transmittance and the downward flux using the FLBL, ie; how well does \(\delta BT = 0\)?

\[
\delta BT = BT\left(\left\{\mathcal{S}(\theta, p_s)F^i(p_s)\right\}\right) - BT\left(\left\{\mathcal{S}(\theta, p_s)\right\}\left\{F^i(p_s)\right\}\right)
\]

decomposition fares poorly
- plot the bias of \(\delta BT\) across 52 ECMWF profiles for \(\varepsilon=.98\) & \(\varepsilon=.7\)
- many channels exhibit large errors that increase with \(\theta, \varepsilon\) & \(p_s\)

if decomposition of \(\mathcal{S} F^i\) is unreliable, then further decomposition of \(F^i\) into [] is probably not reliable, thus new scheme must account for errors due to these decompositions
Sampling of biases across the 52 ECMWF profiles for \(\varepsilon = 0.98 \) (AIRS 889-1080)

\[
\delta BT = BT\left(\langle \mathcal{F}(\theta, p_s) F^\dagger(p_s) \rangle \right) - BT\left(\mathcal{F}(\theta, p_s) \langle F^\dagger(p_s) \rangle \right)
\]
Alternate Algorithm

Assume that for a given \((\theta, p_s)\) there exists a value \(\kappa\) such that replacing \(\mathcal{F}(\theta)\) with \(\mathcal{F}^\kappa(\theta)\) provides a good estimate of the ARDF term

\[
r \cdot \left< \mathcal{F}_\theta(\theta) \right> = \frac{1}{\pi} \left(\sum_{k=1}^{4} \frac{\left< \mathcal{F}^{\theta}_{k-1} \right> \kappa(p_s, \theta) - \left< \mathcal{F}^{\theta}_{k} \right> \kappa(p_s, \theta)}{\left< \mathcal{F}^{\theta}_{k-1} \right> \kappa(p_s, \theta) - \left< \mathcal{F}^{\theta}_{k} \right> \kappa(p_s, \theta)} \right) \left< B_{\theta} \right> \left< \mathcal{F}^{\theta}_{k} \kappa(p_s, \theta) \right>
\]

\(\kappa(\theta, p_s)\) is interpolated from a pre-determined look-up table.

Advantages:

- replaces the 2\(^{nd}\) pass of the fast transmittance model with a lookup table followed by an exponentiation should be faster
- accounts for decomposition of \(<S \hat{F}^\dagger>\)
- preserves current program structures hence, easier to implement
κ - Lookup Table Determination

- develop the basic fast transmittance model (ie $\varepsilon=1$)
- using the same atmospheres to develop the basic model, minimize

$$\left| \left(\mathcal{S}(\theta, p_s) F^{-1}(p_s) \right) - \{\mathcal{S}_\theta^0\} \left(\sum_{k=1}^{\delta} \frac{\{\mathcal{S}_{k-1}^\theta\} \chi(p_s, \theta) - \{\mathcal{S}_k^\theta\} \chi(p_s, \theta) - \{\tilde{B}_k\}}{\{\mathcal{S}_{k-1}^\theta\} \chi(p_s, \theta) \{\mathcal{S}_k^\theta\} \chi(p_s, \theta)} \right) \{\mathcal{S}_\theta^0\} \chi(p_s, \theta) \right| \leq \delta$$

for a set of $\kappa(\theta, p_s)$ for each atmosphere

- table entry is the average $\kappa(\theta, p_s)$ across the atmospheres

NOTE: $<f>$ - FLBL model, $\{f\}$ - fast model
Comparisons

- compare 3 modified forms of RTATOV (Saunders, 1999)
 - add extra levels at .005, .014, .037, 1048.51 & 1085 hPa
 - fast transmittance model coefficients determined from FLBL calculations using ECMWF 52 diverse profile set (AIRS inter-comparison)
 - 6 secants (1, 1.25, 1.5, 1.75, 2 & 2.25)

- $M_1, \, \varphi = \theta, \, \kappa = 1$ single pass thru’ fast transmittance model

- $M_2, \, \varphi = \theta, \, \kappa = 1$ two passes thru’ fast transmittance model

- $M_3, \, \varphi = \theta, \, \kappa = \kappa(\theta, p_s)$ single pass thru’ fast transmittance model followed by exponentiation of $\mathcal{F}(\theta)$
 - $\kappa(\theta, p_s)$ determined for 24 p_s (223 to 1085hPa) and 6 secants (1, 1.25, 1.5, 1.75, 2 & 2.25)

- evaluate BT all 3 models & FLBL for
 - 24 surface pressures (223 to 1085hPa)
 - 21 emissivities (0 to 1), $r = 1/\pi$ to 0
 - 52 ECMWF atmospheres
 - 2378 AIRS channels

- compare bias and standard deviation (stdv) across 53 profiles of the difference,

\[
BT(\left< R_{surf} + R^\dagger + r \mathcal{F}(\theta, p_s) F^\dagger(p_s) \right> - BT(\left< R_{surf} \right> + \left< R^\dagger \right> + r \left< \mathcal{F}(\theta, p_s) \right> \left< F^\dagger(p_s) \right>))
\]
Fig: M1, M2 & M3 bias & stdv as a function of channel for sec $\theta = 1$, $\varepsilon = .7$ and $p_s = 1013$hPa

废气 M2 & M3 fare much better than M1

废气 not clear which performs better M2 or M3 wrt bias or stdv

废气 on average M3 is ~ 1.25 slower than M1 and M2 is ~ 1.6 slower than M1

废气 M3 faster than M2
Bias (left) & stdv (right) for channel 1018 (1007.86(cm⁻¹)) as a function of θ, ε & p_s

- strong θ dependency in M1, weaker in M2 & M3
- small region of low bias & stdv in M1 & M2
- M3 applicable over a wider range of ε & p_s
- M3 models the ARDF term very well in terms of bias
- stdv doesn’t improve using M3, but not any worse
Fig: Bias (left) & stdv (right) for channel 610 (851.8\,(cm^{-1})) as a function of $\theta, \varepsilon & p_s$

- strong θ dependency in M1, weaker in M2 & M3
- small region of low bias & stdv in M1
- M2 applicable over a wider range of $\varepsilon & p_s$
- example of when M2 better than M3
- some improvement in stdv over M1
Fig: More examples of the bias & stdv comparisons
Summary

- algorithm effects bias more than stdv
- both M2 & M3 are an improvement over M1
- M3 is faster than M2
- M2's &/or M3's stdv are generally no worse than M1's
- useful range of ε and p_s increased (ie manageable biases)
- ~65% of the channels perform as well or better than M2 with M3
Problems

- The bias vs channel curve contains many spikes
- Frequently M2 is better than M3 at these spikes

Fig: Upper box illustrates the bias curves for $\theta=0$, $\varepsilon=.6$ and $p_s=1013$ hPa (M1, M2, M3). The middle box is an enlargement of the upper box superimposed on a TOA total transmittance curve. The M1, M2, M3 values of {S} are marked by circles. The lower box is a further enlargement of the middle box with some AIRS spectral response functions superimposed.

- Problem channels are collocated with the core/near wing of H$_2$O spectral lines, these regions are very non-linear
- M3 needs more consideration prior to implementing M3
Conclusions

- The 2 pass transmittance model is preferable over the simple "reflection" model. Some tuning of the diffusivity factor may be required.

- The new algorithm is faster than current algorithms, but does not work for 100% of the channels. Ideally, we would like to use M3 exclusively, but need to "fix the spikes" first.

- Note that M3 does not depend on the relationship between r & ε; they can be independent of each other. Only require that they are constant over the response function.