PERFORMANCE OF THE AQUA/NASA AND NOAA-16/ICI SOUNDINGS OVER RONDONIA DURING THE DRY-TO-WET LBA EXPERIMENT

Rodrigo Augusto F. de Souza¹
Juan Carlos Ceballos²
Christopher D. Barnett³

¹² Divisão de Satélites e Sistemas Ambientais / Centro de Previsão de Tempo e Estudos Climáticos – DSA/CPTEC/INPE
³ National Oceanic and Atmospheric Administration / National Environmental Satellite, Data, and Information Service – NOAA/NESDIS

ABSTRACT
The purpose of this work was to compare the performance of the AQUA sounding system and of the Inversion Coupled with Imager (ICI) software to recover atmospheric profiles of temperature and moisture over Rondonia State (Amazon region) during the DRY-TO-WET Large Scale Biosphere-Atmosphere (LBA) experiment along September and October, 2002. The atmospheric profiles retrieved by both inversion models were compared with the radiosonde data (“ground truth”) of the campaign, considering satellite retrievals within a 100 km radius around the sounding site. The bias and RMS of deviations were assessed for the whole available data of the campaign. Similar comparisons were performed for the quality of Numerical Weather Prediction (NWP) analyses of the National Center for Environmental Prediction (NCEP). The results showed that temperature profiles from ICI, NCEP and NASA C60 model have similar performance for pressure level above 750 hPa. All of them exhibit similar standard deviation in the lower troposphere (about 2 K), but ICI and the analysis showed lower bias (1 to 2 K) compared with C60 (about -5 K, near ground level). On the other hand, the mixing ratio profiles estimated from the NASA inversion model suggested the expected accuracy of about 1 g/kg, a performance comparable to and even better than that observed in ICI and NWP estimates.

REMOTE SOUNDINGS
Remarkable progress has been achieved during the last two decades in retrieving temperature profiles by means of passive infrared sensors. Recent efforts have been concentrated on the development of sensors with high spectral resolution. The AIRS (Advanced Infrared Sensor), with 2378 channels, is the first operational instrument with these characteristics. Concerning temperature and moisture profiles, it exhibits substantial improvements when compared with previous instruments (Parkinson 2003). AIRS sensor was launched onboard EOS-PM (AQUA) satellite in May 2002, together with microwave units AMSU-A and HSIB (Humidity Sensor for Brazil). AIRS sensor provides radiances in 2378 channels, yielding significant increase of information about radiative emission/absorption of many secondary gases in Earth’s atmosphere. However, it is not obvious how to quantify or efficiently manage this information (Rodgers 1998).

It was analyzed the performance of the AQUA sounding system (NASA inversion model, different versions) and of the Inversion Coupled with Imager (ICI) software to recover atmospheric profiles of temperature and moisture over Rondonia State (Amazon region) during the DRY-TO-WET Large Scale Biosphere-Atmosphere (LBA) experiment along September and October, 2002. The atmospheric profiles retrieved by both inversion models were compared with the radiosonde data (“ground truth”) of the campaign, considering satellite retrievals within a 10 km radius around the sounding site (6 and 18 UTC). The bias and RMS of deviations were assessed for the whole available data of the campaign. Similar comparisons were performed for the quality of Numerical Weather Prediction (NWP) analyses of the National Center for Environmental Prediction (NCEP).

RESULTS
The atmospheric profiles retrieved by ICI-3 are within the sensor specifications, which foresee errors of up to 1.5K for the temperature profiles and 1.5g/kg for the moisture (Lavanant et al., 1999). The results showed that temperature profiles from ICI, NCEP and NASA C60 model had similar performance for pressure level above 750 hPa. All of them had similar standard deviation in the lower troposphere (about 2 K.), but ICI and the analysis showed lower bias (1 to 2 K) compared with C60 (about -5 K, near ground level). On the other hand, the mixing ratio profiles estimated from the NASA inversion model suggested the expected accuracy of about 1 g/kg, a performance comparable to and even better than that observed in ICI and NWP estimates. It is important to note that the NASA inversion model was in development phase, and the atmospheric profiles were generated for the validation campaign. Further work is being developed for improving this inversion model (Susskind et al., 2003 and Susskind, 2003).

REFERENCES

ACKNOWLEDGMENTS