Abstract

A method is presented to calculate the earth coordinates of an elliptical shape that approximates the intersection of a spherical field of view with the earth’s surface.

To Do:
1) Fix Kludge* around poles which correctly rotates ellipses in the opposite hemisphere of the sub point
2) Fix a problem with ellipse when a pole is within the fov
3) Draw the fov as realistic ovoid
4) Finalize Fortran90 and IDL code

* A kludge (or kluge) is a 'solution' for accomplishing a task, originally a mechanical one and usually an engineering one, which consists of various otherwise unrelated parts and mechanisms, cobbled together in an ad hoc or disjointed hodgepodge manner. A kludge is never elegant except ironically, nor serviceability to the task at hand excepted, is it ever admirable. Despite this, it generally takes a skilled craftsman, someone intimately familiar with the requirements of the desired task, the properties of the raw material at hand, and the ultimate operating environment, to produce a workaround monstrously clunky enough to be called a kludge. http://en.wikipedia.org/wiki/Kludge

Assumptions:
- The earth is a sphere
- Neglect topography
- The field of view can be represented by an ellipse
- The satellite attitude is nominal
- The satellite height and sub point are known
- The centers of the individual fields of view are known

Next:
A lot of plane and spherical trigonometry is not presented here.

Result:
For each field of view a polygon of arbitrary size is constructed in earth coordinates that approximates the field of view.
This polygon can be passed to a drawing program (such as IDL of PGPLOT) for plotting purposes, or used in a geographical data base.

Used:
Co-locating high resolution imagers with low resolution sounders for cloud detection.
Determining surface types for infrared and microwave emissivity computation.

etc