Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach

A. Larara, W. Smithb, D. Zhoua, X. Liua, and S. Mangoc

aNASA Langley Research Center, Hampton, VA
bHampton University, Hampton, VA
cNPOESS Integrated Program Office, Silver Spring, MD

ITSC-14, Beijing, China
May 25-31, 2005
Topics

• Motivation
• Validation methodology
• Calibration validation examples using spacecraft- and aircraft-based sensors
 – Instrument systems & datasets
 – Spatial registration
 – Spectral fidelity
 – Radiometric accuracy
• Summary & Conclusions
Motivation for satellite sensor cal/val and benefit from using airborne sensors

- **Post-launch validation activities are critical to verify quality of satellite measurement system (i.e., sensor, algorithms, and direct/derived data products)**

- **Resulting data contribute toward essential cal/val activities**
 - On-orbit sensor performance verification
 - On-orbit sensor calibration validation
 - Validate algorithms
 - Direct and derived data product validation
 - Long-term monitoring of sensor performance (radiance & geophysical)

- **Aircraft underflights fundamental to space-based sensor validation**
 - High-altitude aircraft platforms (Proteus, ER-2, DC-8, WB-57, P-3, BAE-146-300, etc.) instrumented with validation sensors (NAST-I, S-HIS, ARIES, INTESA, NAST-M, LASE, MAS, etc.) provide validation data by obtaining spatially & temporally coincident observations with satellite platforms of interest (e.g. Terra (Modis), Aqua (Modis & AIRS), Aura (TES), and future Metop (IASI), NPP/NPOESS (CrIS), and EO-3 (GIFTS).
Calibration Validation Approach*

• Spatial
 – Landmark navigation
 • compare observations to databases for time invariant distinct features of known spatial characterization (e.g., coastlines)
 – Comparison with coincident observations
 • compare measurements with other temporally-coincident same-scene view observations containing spatial feature variability (coastlines, thermal gradients, clouds, hot lava, fires, etc.)

• Spectral
 – Comparison with simulations
 • compare clear sky measured radiance to LBL radiative transfer model calculations for spectral regions where FM parameters are well-known (e.g. spectroscopy, temperature and CO₂ profiles for 15 µm band); vary simulated instrument spectral response to minimize residuals (e.g., effective metrology laser wavenumber for FTS or channel SRFs for grating)
 – Comparison with coincident observations
 • compare measured radiance with other temporally-coincident same-scene view high-spectral resolution measurements (i.e., a/c- or s/c-based FTS)

• Radiometric
 – Comparison with other coincident observations and simulations
 • compare measured radiances in window and opaque regions across spectral extent, for varying uniform clear sky over ocean and overcast scene temperatures, with other observations/calculations
 – High-spectral resolution measurements (aircraft, e.g. NAST-I & SHIS; s/c, e.g. AIRS, IASI, CrIS)
 – Broadband radiance measurements (e.g., GOES, SEVERI, MODIS, VIIRS)
 – Radiative transfer calculations (using, e.g., radiosondes, NWP analysis fields, e.g., ECMWF)

* Applied to each detector, i.e. FTS band, grating channel, etc.
Characteristics of Remote Sensors Employed in Study

<table>
<thead>
<tr>
<th>Instrument system</th>
<th>Sensor type</th>
<th>Spectral extent</th>
<th>Spectral resolution</th>
<th>Nadir IFOV</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAST-I</td>
<td>Michelson interferometer</td>
<td>3.5 – 16 µ, continuous</td>
<td>0.25 cm(^{-1}), (\nu/\delta \nu > 2000)</td>
<td>2.5 km (from ER-2)</td>
<td>ER-2 / Proteus</td>
</tr>
<tr>
<td>S-HIS</td>
<td>Michelson interferometer</td>
<td>3.0 – 17 µ, continuous</td>
<td>0.5 cm(^{-1}), (\nu/\delta \nu > 1000)</td>
<td>2.0 km (from ER-2)</td>
<td>ER-2 / Proteus</td>
</tr>
<tr>
<td>AIRS</td>
<td>Grating spectrometer</td>
<td>3.8 – 15.4 µ, discrete channels</td>
<td>~0.4 – 2.2 cm(^{-1}), (\nu/\delta \nu \sim 1200)</td>
<td>~ 13.5 km</td>
<td>AQUA</td>
</tr>
<tr>
<td>MODIS</td>
<td>Grating spectrometer</td>
<td>3.6 – 14.4 µ (IR bands 20 – 36), discrete channels</td>
<td>~13 – 128 cm(^{-1}), broadband filters</td>
<td>~ 1 km</td>
<td>AQUA</td>
</tr>
</tbody>
</table>
Case Study: **PTOST**

- **PTOST** (February 18 - March 13, 2003, HAFB, Hawaii). The 2003 *Pacific THORPEX Observing System Test (PTOST)* was the first in a series of Pacific and Atlantic observation campaigns in support of the WWRP/USRP THORPEX Program. THORPEX - a Global Atmospheric Research Program aimed at improving short range (up to 3 days), medium range (3-7 days) and extended range (two week) weather predictions. Flights targeted frontal boundaries and storm systems, as well as satellite sensor validation underflights (TERRA, AQUA, and ICESat)

Aircraft Payload Included:

ER-2 (NAST-I, NAST-M, S-HIS, MAS, CPL); G-IV (Dropsondes, in-situ O₃)

Satellite Platforms Included:

Terra, Aqua, GOES
Case Study: **EAQUATE**

Continued NPP/NPOESS risk mitigation with pre-Metop (IASI, AMSU, MHS, HIRS) collaborations focusing on Aqua satellite cal/val and chemistry product validation

- **European AQUA Thermodynamic Experiment (EAQUATE)**
 - Naples, Italy; 3 – 11 Sep; **Proteus, Potenza/Naples ground sites, AQUA**
 - Cranfield, UK; 11 – 19 Sep; **Proteus, BAE 146-300, & AQUA**

Measurements Included:

- [**NG Proteus**](#) (NAST-I, NAST-M, S-HIS, FIRSC, MicroMAPS)
- [**UK BAE146-300**](#) (ARIES, TAFTS, SWS, MARSS & Deimos; dropsondes; in-situ cloud phys. & trace species)
- [**Ground sites**](#): Potenza/Naples (lidar, radiosondes, aeri, m-wave)
- [**Satellite**](#): AQUA (AIRS & MODIS); MSG (Seviri)
Spatial Calibration Validation Example

• Comparison of Aqua AIRS and MODIS relative spatial registration
 – AIRS spatially-convolved with MODIS B31 (11 µ) SRF
 – MODIS B31 integrated spatially over AIRS IFOVs
 – RSS differences calculated for varying relative offsets in spatial co-registration
 – Portions of granules examined for 7 recent NAST campaign flight days
Sample Spatial Registration Results

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
<table>
<thead>
<tr>
<th>DATE</th>
<th>Δx#</th>
<th>Δy#</th>
</tr>
</thead>
<tbody>
<tr>
<td>030303</td>
<td>1.70</td>
<td>-0.60</td>
</tr>
<tr>
<td>031003</td>
<td>2.70</td>
<td>0.00</td>
</tr>
<tr>
<td>031203</td>
<td>2.00</td>
<td>-0.90</td>
</tr>
<tr>
<td>090704</td>
<td>0.90</td>
<td>-0.80</td>
</tr>
<tr>
<td>090904</td>
<td>1.30</td>
<td>-1.50</td>
</tr>
<tr>
<td>091404</td>
<td>1.70</td>
<td>-0.30</td>
</tr>
<tr>
<td>091804</td>
<td>1.50</td>
<td>-0.10</td>
</tr>
<tr>
<td>Average</td>
<td>1.69</td>
<td>-0.60</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.57</td>
<td>0.52</td>
</tr>
</tbody>
</table>

° preliminary results; not necessarily representative of all spectral bands or spatial positions.

* Select flight days during recent NAST field campaigns

units of modis pixels
Example spectral impact of spatial mis-registration for neighboring channels

- Spectra for uniform & non-uniform scenes shown for two days
- NAST-I in black; AIRS in colors
- Spectral extent of 3 AIRS detector modules also shown
Spectral Calibration Validation Example

• NAST-I laser cm\(^{-1}\) stability study
 – Spectral calibration fidelity assessed by varying laser wavenumber in simulations to best match measured (calibrated) radiance spectra (i.e. minimizing RSS of obs-calc residual)

• Select days examined from most campaigns
 – CAMEX3 (13 Sep 98); Wallops99 (23 Aug 99); AFWEX (29 Nov, 4 Dec 00); CLAMS (10 Jul 01); IHOP (11 Jun 02); CF (26 Jul 02); PTOST (3, 10, & 12 Mar 03); ATOST (19 Nov, 3 & 8 Dec 03); INTEX (22 Jul 04); EAQUATE (9 & 18 Sep 04)

• Simulation assumptions
 – \(\nu_0=15799.0\) cm\(^{-1}\) (~0.633 micron) used as baseline for sims
 – Atmospheric state from PTOST 030303
Laser wavenumber offsets vs time

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
Radiometric Calibration Validation

Examples

- Incorporate multiple, independent, temporally- & spatially-coincident data from recent NAST field campaigns (PTOST & EAQUATE)
 - Satellite:
 - AQUA (AIRS & MODIS)
 - Aircraft:
 - ER-2/Proteus (NAST-I & S-HIS)
 - Ground:
 - Potenza (lidar & radiosondes)

- Verify spatial co-registration by comparing geo-referenced images at select λ

- LBL-based calculations for simulated observations
 - Using best combination of “truth” data for sfc & atm state

- Compare view-angle-coincident observations with broadband SRFs applied (i.e. Modis)

- For clear, uniform regions, compare high resolution spectra (i.e. NAST-I, S-HIS, & AIRS)
MODIS vs AIRS

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
MB31 stddev (AIRS IFOVs)

- max = 0.22 K
- min = 0.05 K
- mean = 0.11 K
- stdev = 0.05 K

Spectra Comparison: NAST-I, S-HIS, AIRS

14.3 - 4 μ

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
Spectra Comparison: NAST-I, S-HIS, AIRS

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.

EAQUATE 090904

Spectra Comparison: NAST-I, S-HIS, AIRS

MB31

(11 micron LW Win)

MB31 stddev (AIRS IFOVs)

max = 0.16 K
min = 0.10 K
mean = 0.14 K
stdev = 0.02 K
Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.

MB31 (11 micron LW Win)

Spectra Comparison: NAST-I, S-HIS, AIRS

MB31 stddev (AIRS IFOVs)
max = 0.23 K
min = 0.07 K
mean = 0.16 K
stdev = 0.05 K
Spectra Comparison: NAST-I, S-HIS, AIRS

- **14.3 – 12.5 µ**
 - NAST-I
 - S-HIS
 - AIRS

- **8.1 – 7.4 µ**

- **11.5 – 9.9 µ**

- **4.2 – 4.0 µ**
Selected nadir IFOVs (NAST-I & S-HIS)

Spectra Comparison: NAST-I, S-HIS

MB31 (11 micron LW Win)
Spectra Comparison: NAST-I, S-HIS

14.3 – 12.5 μ

8.1 – 7.4 μ

11.5 – 9.9 μ

4.2 – 4.0 μ
MODIS – AIRS
(all overlapping IFOVs)

<table>
<thead>
<tr>
<th>Band</th>
<th>090704</th>
<th>090904</th>
<th>091404</th>
<th>091804</th>
<th>030303</th>
<th>031003</th>
<th>031203</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB21 (3.95 micron SW Win)</td>
<td>-0.13</td>
<td>-0.04</td>
<td>0.02</td>
<td>-0.20</td>
<td>0.15</td>
<td>0.21</td>
<td>0.44</td>
</tr>
<tr>
<td>MB24 (4.46 micron CO2)</td>
<td>-0.16</td>
<td>-0.17</td>
<td>0.34</td>
<td>0.59</td>
<td>0.30</td>
<td>0.46</td>
<td>0.19</td>
</tr>
<tr>
<td>MB27 (6.7 micron H2O)</td>
<td>-0.99</td>
<td>-0.92</td>
<td>-0.64</td>
<td>-0.80</td>
<td>-0.55</td>
<td>-0.63</td>
<td>-0.65</td>
</tr>
<tr>
<td>MB28 (7.2 micron H2O)</td>
<td>-0.42</td>
<td>-0.41</td>
<td>-0.38</td>
<td>-0.47</td>
<td>-0.32</td>
<td>-0.36</td>
<td>-0.33</td>
</tr>
<tr>
<td>MB29 (8.55 micron LW Win)</td>
<td>-0.47</td>
<td>-0.37</td>
<td>-0.20</td>
<td>-0.47</td>
<td>-0.16</td>
<td>-0.10</td>
<td>-0.21</td>
</tr>
<tr>
<td>MB30 (9.6 micron O3)</td>
<td>0.36</td>
<td>0.35</td>
<td>0.50</td>
<td>0.45</td>
<td>0.59</td>
<td>0.67</td>
<td>0.63</td>
</tr>
<tr>
<td>MB31 (11 micron LW Win)</td>
<td>0.44</td>
<td>0.55</td>
<td>0.16</td>
<td>0.37</td>
<td>-0.05</td>
<td>-0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>MB32 (12 micron LW Win)</td>
<td>-0.04</td>
<td>-0.00</td>
<td>-0.14</td>
<td>-0.17</td>
<td>-0.07</td>
<td>-0.06</td>
<td>-0.00</td>
</tr>
<tr>
<td>MB33 (13.3 micron CO2)</td>
<td>-0.42</td>
<td>-0.45</td>
<td>-0.45</td>
<td>-0.39</td>
<td>-0.50</td>
<td>-0.43</td>
<td>-0.42</td>
</tr>
<tr>
<td>MB36 (14.2 micron CO2)</td>
<td>1.19</td>
<td>1.29</td>
<td>1.03</td>
<td>0.92</td>
<td>1.23</td>
<td>1.14</td>
<td>1.24</td>
</tr>
</tbody>
</table>

- MODIS band SRFs applied to AIRS
- MODIS integrated over AIRS IFOVs
- “bias” values (K) of linear fits to scatter plots shown

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
Select Sensor Offsets Observed during EAQUATE* Flight Days

* PTOST data shown in green

<table>
<thead>
<tr>
<th>MB31 (11.0 μ)</th>
<th>MODIS - NASTI</th>
<th>MODIS – S-HIS</th>
<th>MODIS_sm - AIRS</th>
<th>NAST-I – S-HIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>090704</td>
<td>-0.43</td>
<td>-0.28</td>
<td>0.61</td>
<td>0.18</td>
</tr>
<tr>
<td>090904</td>
<td>-0.68</td>
<td>-0.43</td>
<td>0.64</td>
<td>0.14</td>
</tr>
<tr>
<td>091404</td>
<td>-0.56</td>
<td>-0.31</td>
<td>0.48</td>
<td>0.07</td>
</tr>
<tr>
<td>091804</td>
<td>N/A</td>
<td>N/A</td>
<td>0.61</td>
<td>0.11</td>
</tr>
<tr>
<td>030303</td>
<td>-0.35</td>
<td>-0.09</td>
<td>0.04</td>
<td>0.21</td>
</tr>
<tr>
<td>031003</td>
<td>-0.27</td>
<td>0.05</td>
<td>-0.04</td>
<td>0.29</td>
</tr>
<tr>
<td>031203</td>
<td>-0.33</td>
<td>0.05</td>
<td>0.02</td>
<td>0.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MB28 (7.2 μ)</th>
<th>MODIS - NASTI</th>
<th>MODIS – S-HIS</th>
<th>MODIS_sm - AIRS</th>
<th>NAST-I – S-HIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>090704</td>
<td>-0.44</td>
<td>-0.83</td>
<td>-0.44</td>
<td>-0.17</td>
</tr>
<tr>
<td>090904</td>
<td>-0.35</td>
<td>-0.56</td>
<td>-0.41</td>
<td>-0.27</td>
</tr>
<tr>
<td>091404</td>
<td>-0.32</td>
<td>-0.57</td>
<td>-0.36</td>
<td>-0.18</td>
</tr>
<tr>
<td>091804</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.36</td>
<td>-0.12</td>
</tr>
<tr>
<td>030303</td>
<td>-0.09</td>
<td>0.38</td>
<td>-0.25</td>
<td>0.36</td>
</tr>
<tr>
<td>031003</td>
<td>0.09</td>
<td>0.45</td>
<td>-0.38</td>
<td>0.30</td>
</tr>
<tr>
<td>031203</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.35</td>
<td>0.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MB32 (12 μ)</th>
<th>MODIS - NASTI</th>
<th>MODIS – S-HIS</th>
<th>MODIS_sm - AIRS</th>
<th>NAST-I – S-HIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>090704</td>
<td>-0.31</td>
<td>-0.20</td>
<td>0.02</td>
<td>0.14</td>
</tr>
<tr>
<td>090904</td>
<td>-0.55</td>
<td>-0.28</td>
<td>0.03</td>
<td>0.17</td>
</tr>
<tr>
<td>091404</td>
<td>-0.39</td>
<td>-0.23</td>
<td>-0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>091804</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>030303</td>
<td>-0.31</td>
<td>0.03</td>
<td>0.02</td>
<td>0.22</td>
</tr>
<tr>
<td>031003</td>
<td>-0.17</td>
<td>0.14</td>
<td>-0.07</td>
<td>0.26</td>
</tr>
<tr>
<td>031203</td>
<td>-0.21</td>
<td>0.08</td>
<td>0.01</td>
<td>0.20</td>
</tr>
</tbody>
</table>

- MODIS band SRFs applied to HSR sensor data
- View-angle-coincident data along nast nadir track compared
- MODIS integrated over AIRS IFOVs = MODIS_sm; others are single IFOVs
- “bias” values (K) of linear fits to histogram-filtered scatter plots shown

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
PTOST 031003

Spectra Comparison: NAST-I, S-HIS, AIRS

MB31 stddev (AIRS IFOVs)
max = 0.27 K
min = 0.04 K
mean = 0.10 K
stdev = 0.05 K

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.
Summary & Conclusions

- Post-launch validation activities are critical to verify quality of satellite measurement system (i.e., sensor, algorithms, and direct/derived data products)

- Absolute and relative spatial registration can be validated using ground truth and simultaneous observations, respectively

- Spectral fidelity easily verified via simulations, but corresponding radiometric accuracy verification from simulation is limited by vertical accuracy of ancillary data and absolute accuracy of spectroscopic parameters

- Aside from collocated sensor(s) on same platform, space-based sensor radiometric validation best achieved using high-altitude aircraft based sensors; can eliminate errors from spatial and temporal mismatches and spectroscopic data uncertainties, and allows viewing most of atmospheric column; enables extrapolation of calibration reference through underflight/characterization of other (e.g. broadband) systems

- High resolution FTS systems (e.g., NAST-I & S-HIS) provide continuous spectra of high radiometric and spectral fidelity enabling emulation of other high-resolution or broadband instrument systems

- Spatial and temporal coincidence between observing systems crucial to differentiate between measurement uncertainty and geophysical variability