AIRS Related Advances at the JCSDA -ITCS14-
Overview

- JCSDA
- Background
- Data Base
- The Assimilation System
- Results to Date.
- Imminent Activity
- Summary
Joint Center for Satellite Data Assimilation

Partners:
- NASA/Goddard
 Global Modeling & Assimilation Office
- NOAA/NESDIS
 Office of Research & Applications
- NOAA/NCEP
 Environmental Modeling Center
- NOAA/OAR
 Office of Weather and Air Quality
- US Navy
 Oceanographer of the Navy, Office of Naval Research (NRL)
- US Air Force
 AF Director of Weather
 AF Weather Agency
JCSDA Structure

Associate Administrators
NASA: Science
NOAA: NESDIS, NWS, OAR
DoD: Navy, Air Force

Management Oversight Board of Directors:
NOAA NWS: L. Uccellini (Chair)
NASA GSFC: F. Einaudi
NOAA NESDIS: M. Colton
NOAA OAR: M. Uhart
Navy: S. Chang
USAF: H. Elkins

Advisory Panel

Science Steering Committee

Joint Center for Satellite Data Assimilation Staff
Director: J. Le Marshall
Deputy Directors:
Stephen Lord – NWS/NCEP
Jim Yoe - NESDIS
Lars Peter Riishogjaard – GSFC, GMAO
Pat Phoebus – DoD, NRL
Secretary: Ada Armstrong
Consultant: George Ohring

Rotating Chair

Technical Liaisons:
NOAA/NWS/NCEP – J. Derber
NASA/GMAO – M. Rienecker
NOAA/NESDIS – D. Tarpley
NOAA/OAR – A. Gasiewski
Army – G. Mc Williams
NASA/GMAO – D. Dee
USAF – M. McATee
Navy – N. Baker
JCSDA Mission and Vision

- Mission: Accelerate and improve the quantitative use of research and operational satellite data in weather and climate analysis and prediction models
- Near-term Vision: A weather and climate analysis and prediction community empowered to effectively assimilate increasing amounts of advanced satellite observations
- Long-term Vision: An environmental analysis and prediction community empowered to effectively use the integrated observations of the GEOSS
Goals – Short/Medium Term

- Increase uses of current and future satellite data in Numerical Weather and Climate Analysis and Prediction models
- Develop the hardware/software systems needed to assimilate data from the advanced satellite sensors
- Advance the common NWP models and data assimilation infrastructure
- Develop common fast radiative transfer system
- Assess the impacts of data from advanced satellite sensors on weather and climate analysis and prediction
- Reduce the average time for operational implementations of new satellite technology from two years to one
Required Capabilities to Achieve Goals

• A satellite data assimilation infrastructure

• A directed research and development program

• A grants program for long-term research

• An education and outreach program
	A	B	C	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	
1	Satellite Instruments and Their Characteristics (* = currently assimilated in NWP)																		
2	Primary Information Content	Priority																	
3	Platform	Instrument	Status	Temperature	Humidity	Cloud	Precipitation	Wind	Ozone	Land Surface	Ocean Surface	Aerosols	Earth Radiation Budget	NOAA	NAVY	NASA	AIR FORCE	NAVY	NON-ASSIM
4	DMSP	SSM/I *	Current	v	v	v	v	v	v	v	v	1	1	1	3	1			
5	POES	AMSU-A *	Current	v	v	v	v	v	v	v	v	1	1	1	3	1			
6	GFO	Altimeter*	Current	v	v	v	v	v	v	v	v	2	1	2	3	1			
7	Terra	MODIS*	Current	v	v	v	v	v	v	v	v	2	1	2	1	1			
8	TRMM	TMI	Current	v	v	v	v	v	v	v	v	3	2	3	1	2			
9	QuikSCAT	Scatterometer*	Current	v	v	v	v	v	v	v	v	3	3	3	1	3			
10	TOPEX	Altimeter *	Current	v	v	v	v	v	v	v	v	1	1	1	2	1			
11	Envisat	Altimeter*	Current	v	v	v	v	v	v	v	v	1	1	1	2	1			
12	Envisat	MWR	Current	v	v	v	v	v	v	v	v	2	1	2	2	1			
13	Envisat	MIPAS	Current	v	v	v	v	v	v	v	v	2	2	2	2	2			
14	Envisat	AATSR	Current	v	v	v	v	v	v	v	v	2	1	2	1	2			
15	Envisat	MERIS	Current	v	v	v	v	v	v	v	v	2	2	2	2	1			
16	Envisat	SCIAMACHY	Current	v	v	v	v	v	v	v	v	3	3	3	2	3			
17	Envisat	GOMOS	Current	v	v	v	v	v	v	v	v	2	1	2	1	2			
The NPOESS spacecraft has the requirement to operate in three different sun synchronous orbits, 1330, 2130 and 1730 with different configurations of fourteen different environmental sensors that provide environmental data records (EDRs) for space, ocean/water, land, radiation clouds and atmospheric parameters.

In order to meet this requirement, the prime NPOESS contractor, Northrop Grumman Space Technology, is using their flight-qualified NPOESS T430 spacecraft. This spacecraft leverages extensive experience on NASA’s EOS Aqua and Aura programs that integrated similar sensors as NPOESS.

As was required for EOS, the NPOESS T430 structure is an optically and dynamically stable platform specifically designed for earth observation missions with complex sensor suites.

In order to manage engineering, design, and integration risks, a single spacecraft bus for all three orbits provides cost-effective support for accelerated launch call-up and operation requirement changes. In most cases, a sensor can be easily deployed in a different orbit because it will be placed in the same position on the any spacecraft. There are ample resource margins for the sensors, allowing for compensation due to changes in sensor requirements and future planned improvements.

The spacecraft still has reserve mass and power margin for the most stressing 1330 orbit, which has eleven sensors. The five panel solar array, expandable to six, is one design, providing power in the different orbits and configurations.
5-Order Magnitude Increase in Satellite Data Over 10 Years

Daily Upper Air Observation Count

Satellite Instruments by Platform

<table>
<thead>
<tr>
<th>Year</th>
<th>Count (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>100</td>
</tr>
</tbody>
</table>
By 2010, a numerical weather prediction community will be empowered to effectively assimilate increasing amounts of advanced satellite observations.

Resources:

- **Pre-JCSDA data assimilation science**
 - AMSU, HIRS, SSM/I, Quikscat, AVHRR, TMI, GOES assimilated

- **Improved JCSDA data assimilation science**
 - Radiative transfer model, OPTRAN, ocean microwave emissivity, microwave land emissivity model, and GFS data assimilation system were developed

- **Advanced JCSDA community-based radiative transfer model, Advanced data thinning techniques**
 - AIRS, ATMS, CrIS, VIIRS, IASI, SSM/IS, AMSR, WINDSAT, GPS, more products assimilated

- **NPOESS sensors (CMIS, ATMS...) GIFTS, GOES-R**

- **3D VAR 4D VAR**

The radiances can be assimilated under all conditions with the state-of-the-science NWP models.

The radiances from advanced sounders will be used. Cloudy radiances will be tested under rain-free atmospheres, more products (ozone, water vapor winds)

A beta version of JCSDA community-based radiative transfer model (CRTM) transfer model will be developed, including non-raining clouds, snow and sea ice surface conditions

The radiances of satellite sounding channels were assimilated into EMC global model under only clear atmospheric conditions. Some satellite surface products (SST, GVI and snow cover, wind) were used in EMC models.
Short Term Priorities (04)

- **MODIS**: MODIS AMV assessment and enhancement. Accelerate assimilation into operational models.

- **AIRS**: Improved utilization of AIRS
 - Improve data coverage of assimilated data. Improve spectral content in assimilated data.
 - Improve QC using other satellite data (e.g. MODIS, AMSU)
 - Investigate using cloudy scene radiances and cloud clearing options
 - Improve RT Ozone estimates
 - Reduce operational assimilation time penalty (Transmittance Upgrade)

- **SSMIS**: Collaborate with the SSMIS CALVAL Team to jointly help assess SSMIS data. Accelerate assimilation into operational model as appropriate
Some Major Accomplishments

- Common assimilation infrastructure at NOAA and NASA
- Common NOAA/NASA land data assimilation system
- Interfaces between JCSDA models and external researchers
- Community radiative transfer model—Significant new developments, New release June
- Snow/sea ice emissivity model—permits 300% increase in sounding data usage over high latitudes—improved polar forecasts
- Advanced satellite data systems such as EOS (MODIS Winds, Aqua AIRS, AMSR-E) tested for implementation
 - MODIS winds, polar regions - improved forecasts. Current Implementation
 - Aqua AIRS - improved forecasts. Current Implementation
- Improved physically based SST analysis
- Advanced satellite data systems such as
 - DMSP (SSMIS),
 - CHAMP GPS
 being tested for implementation
- Impact studies of POES AMSU, Quikscat, GOES and EOS AIRS/MODIS with JCSDA data assimilation systems completed.
AIRS/AQUA/Assimilation Studies

Targeted studies
Pre-Operational trials
Initial
First
Second
............
AIRS/AQUA

Initial Studies
Contributors: GMAO: L.P. Riishojgaard, EMC: Zoltan Toth, Lacey Holland

Summary of Accomplishments

• GMAO developed a software for stratifying observational data stream that indicates the area having higher background errors
• EMC had some dropsonde data released in the areas found sensitive to Ensemble Kalman Filter technique where high impact events occurs.
• Joint EMC/GMAO have identified 10 winter storm cases in 2003 that have large forecast errors for AIRS studies
Use of AQUA brightness temperatures in the NCEP GDAS

Stephen Lord
Stacie Bender, John Derber, Lacey Holland, Zoltan Toth, Russ Treadon
SSI modifications

- conservative detection of IR cloudy radiances
 - examine sensitivity, δT_b, of simulated T_b to presence of cloud and skin temperature
 - those channels for which δT_b exceeds an empirical threshold are not assimilated
SSI modifications

- more flexible horizontal thinning/weighting
 - account for sensors measuring similar quantities
 - specify sensor groupings (all IR, all AMSU-A, etc)
 - specify relative weighting for sensors within group

Old thinning/weighting

Field: $1/(\text{obs error})^2$ for AMSU-A channel 10
Valid: ± 3 hours about 2004041112

New thinning/weighting

Field: $1/(\text{obs error})^2$ for AMSU-A channel 10
Valid: ± 3 hours about 2004041112
How the impact of AIRS was evaluated

- **CASE SELECTION**
 - 7 Cases selected from Winter Storm Reconnaissance (WSR) program during 2003
 - Forecasts with high RMSE for given lead time chosen

- **DATA SELECTION**
 - AIRS data assimilated only in locations identified as having the most potential for forecast improvement as determined through WSR (areas containing 90% or more of maximum sens. value)
 - Somewhat larger area covered by the AIRS data compared to WSR dropsonde coverage

- **EVALUATION**
 - Impact tested by comparing two forecast/analysis GFS cycles (T126L28), identical except that one contains AIRS data while the other does not
 - Control has all operationally available data (including WSR dropsondes)
Data Impact of AIRS on 500 hPa Temperature (top left), IR Satellite Image (top right), and estimated sensitivity (left) for 18 Feb 2003 at 00 UTC

Impact outside the targeted areas is due to small differences between the first guess forecasts. Sensitive areas show no data impact due to cloud coverage.

- Light purple shading indicates AIRS data selection
- Violet squares indicate dropsonde locations
- Red ellipse shows verification region
<table>
<thead>
<tr>
<th>SFC. PRES. (based on RMSE)</th>
<th>AIRS + drops vs. drops only</th>
<th>Drops vs. no drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Neutral</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Degraded</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VECTOR WIND (1000-250 hPa)</th>
<th>AIRS + drops</th>
<th>Drops vs. no drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Neutral</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Degraded</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMP (1000-250 hPa)</th>
<th>AIRS + drops vs. drops only</th>
<th>Drops vs. no drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Neutral</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Degraded</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIFIC HUMIDITY (1000-250 hPa)</th>
<th>AIRS + drops vs. drops only</th>
<th>Drops only vs. no drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Neutral</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Degraded</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Improved/Neutral/Degraded classification based on RMSE of forecasts verified against raobs over WSR pre-defined verification area.
Overall impact of AIRS on WSR forecasts

- determined by comparing the number of fields (temperature, vector wind, humidity between 1000-250 hPa as well as sfc pressure) that were improved or degraded for each case

<table>
<thead>
<tr>
<th>OVERALL</th>
<th>AIRS + drops vs. drops only</th>
<th>Drops vs. no drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Neutral</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Degraded</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

- While the addition of dropsondes shows a slight positive impact, the addition of AIRS data has no overall benefit
Assimilation of advanced sounders at NCEP

John C. Derber, Russ Treadon, and Paul VanDelst
NOAA/NWS/NCEP/EMC
AIRS data

• 254 out of 281 channels used
 – 73-86 removed (channels peak too high)
 – 1937-2109 removed (non-LTE)
 – 2357 removed (large obs-background diff.)

• Shortwave channels during day
 – (wavenumber > 2000) down weighted
 – (wavenumber > 2400) removed
AIRS observational errors

28 June 2004
ECMWF workshop on Assimilation of high spectral resolution sounders
AQUA impact studies

- Test period 10 Mar – 5 Apr 2004
- Uses data operational at time of experiment
- Mass storage problems on our machine, so some incomplete evaluation
- Experiments
 - Current operational
 - Current + AIRS
 - Current + AQUA AMSU
 - Current + AIRS + AQUA AMSU (underway)

28 June 2004
ECMWF workshop on Assimilation of high spectral resolution sounders
AIRS Comments

- Results with both AIRS and AQUA AMSU similar so far
- AIRS data used when radiances clear (above and between clouds) – 38% of thinned data used
- To date – little impact of AIRS data
- Adds 7-8 minutes to analysis wall time
- Impact studies continuing
AQUA

ICSDA

RECENT ADVANCES
AIRS Data Assimilation

J. Le Marshall, J. Jung, J. Derber, R. Treadon,
S.J. Lord, M. Goldberg, W. Wolf and H-S Liu, J. Joiner,
P. van Delst, R. Atlas and J. Woollen.

1 January 2004 – 31 January 2004

Used operational GFS system as Control

Used Operational GFS system Plus Enhanced AIRS Processing as Experimental System
Table 1: Satellite data used operationally within the NCEP Global Forecast System

<table>
<thead>
<tr>
<th>HIRS sounder radiances</th>
<th>TRMM precipitation rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMSU-A sounder radiances</td>
<td>ERS-2 ocean surface wind vectors</td>
</tr>
<tr>
<td>AMSU-B sounder radiances</td>
<td>Quikscat ocean surface wind vectors</td>
</tr>
<tr>
<td>GOES sounder radiances</td>
<td>AVHRR SST</td>
</tr>
<tr>
<td>GOES 9,10,12, Meteosat</td>
<td>AVHRR vegetation fraction</td>
</tr>
<tr>
<td>atmospheric motion vectors</td>
<td>AVHRR surface type</td>
</tr>
<tr>
<td>GOES precipitation rate</td>
<td>Multi-satellite snow cover</td>
</tr>
<tr>
<td>SSM/I ocean surface wind speeds</td>
<td>Multi-satellite sea ice</td>
</tr>
<tr>
<td>SSM/I precipitation rates</td>
<td>SBUV/2 ozone profile and total ozone</td>
</tr>
</tbody>
</table>
Global Forecast System

Background

- Operational SSI (3DVAR) version used
- Operational GFS T254L64 with reductions in resolution at 84 (T170L42) and 180 (T126L28) hours.
- 2.5hr data cut off
The Trials – Assim1

- Used `full AIRS data stream used (JPL)
 - NESDIS (ORA) generated BUFR files
 - All FOVs, 324(281) channels
 - 1 Jan – 15 Feb ’04

- Similar assimilation methodology to that used for operations
- Operational data cut-offs used
- Additional cloud handling added to 3D Var.
- Data thinning to ensure satisfying operational time constraints
The Trials – Assim1

- Used NCEP Operational verification scheme.
AIRS data coverage at 06 UTC on 31 January 2004. (Obs-Calc. Brightness Temperatures at 661.8 cm\(^{-1}\) are shown)
Figure 5. Spectral locations for 324 AIRS thinned channel data distributed to NWP centers.
Table 2: AIRS Data Usage per Six Hourly Analysis Cycle

<table>
<thead>
<tr>
<th>Data Category</th>
<th>Number of AIRS Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Data Input to Analysis</td>
<td>~200x10^6 radiances (channels)</td>
</tr>
<tr>
<td>Data Selected for Possible Use</td>
<td>~2.1x10^6 radiances (channels)</td>
</tr>
<tr>
<td>Data Used in 3D VAR Analysis (Clear Radiances)</td>
<td>~0.85x10^6 radiances (channels)</td>
</tr>
</tbody>
</table>
Figure 1(a). 1000hPa Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Southern hemisphere, January 2004- Assim1
Figure 1(a). 500hPa Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Southern hemisphere, January 2004 – Assim1
Figure 1(a). 1000 hPa Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Southern hemisphere, January 2004
Figure 1(a). 1000hPa Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Northern Hemisphere, January 2004.
Figure 1(a). 500hPa Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Northern Hemisphere, January 2004
AIRS Data Assimilation

J. Le Marshall, J. Jung, J. Derber, R. Treadon,
S. J. Lord, M. Goldberg, W. Wolf and H-S Liu, J. Joiner,
P. van Delst, R. Atlas and J. Woollen......

1 January 2004 – 31 January 2004

Used operational GFS system as Control

Used Operational GFS system Plus Enhanced AIRS Processing as Experimental System

Clear Positive Impact
AIRS Data Assimilation

J. Le Marshall, J. Jung, J. Derber, R. Treadon,
S.J. Lord, M. Goldberg, W. Wolf and H-S Liu, J. Joiner,
P. van Delst, R. Atlas and J Woollen.

1 January 2004 – 27 January 2004

Used operational GFS system as Control

Used Operational GFS system Plus Enhanced AIRS Processing as Experimental System
The Trials – Assim 2

- Used `full AIRS data stream used (JPL)
 - NESDIS (ORA) generated BUFR files
 - All FOVs, 324(281) channels
 - 1 Jan – 27 Jan ’04

- Similar assimilation methodology to that used for operations
- Operational data cut-offs used
- Additional cloud handling added to 3D Var.
- Data thinning to ensure satisfying operational time constraints
The Trials – Assim 2

• AIRS related weights/noise modified
• Used NCEP Operational verification scheme.
Figure 1(a). 1000hPa Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Southern hemisphere, January 2004.
Figure 1(b). 500hPa Z Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Southern hemisphere, January 2004
Figure 2. 500hPa Z Anomaly Correlations 5 Day Forecast for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Southern hemisphere, (1-27) January 2004
Figure 3(a). 1000hPa Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Northern hemisphere, January 2004.
Figure 3(b). 500hPa Z Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Northern hemisphere, January 2004
AIRS Data Assimilation

J. Le Marshall, J. Jung, J. Derber, R. Treadon,
S.J. Lord, M. Goldberg, W. Wolf and H-S Liu, J. Joiner,
P. van Delst, R. Atlas and J Woollen......

1 January 2004 – 27 January 2004

Used operational GFS system as Control

Used Operational GFS system Plus Enhanced AIRS Processing as Experimental System

Clear Positive Impact
AIRS Data Assimilation
Supporting Studies:
1-13 January 2003

Used next generation GMAO GSI system as Control

Used next generation GMAO GSI system Plus AIRS as Experimental System

Positive Impact
AIRS Data Assimilation

10 August – 20 September 2004

Used operational GFS system as plus AQUA AMSU plus Conv. AIRS as Control

Used operational GFS system as plus AQUA AMSU Plus Enhanced AIRS Sys. as Experimental System
Impact of AIRS spatial data density/QC (Snow, SSI/eo/nw)

N. Hemisphere 500 mb AC Z
20N - 80N Waves 1-20
10 Aug - 20 Sep '04

Anomaly Correlation

0.75 0.8 0.85 0.9 0.95 1

0 1 2 3 4 5
Forecast [days]

Cntl AIRS
SpEn AIRS
AIRS Data Assimilation
-The Next Steps

Fast Radiative Transfer Modelling (OSS, Superfast RTM)

GFS Assimilation studies using:
- full spatial resolution AIRS data, MODIS, cld info. & €
- full spatial resolution AIRS data with recon. radiances
- full spatial res. AIRS with cld. cleared radiances
 (¢ AMSU/MODIS/MFG use)
- full spatial and spectral res. AIRS data
- full spatial and spectral res. raw cloudy AIRS
 (¢ MODIS/AMSU) data
- (full cloudy inversion with cloud parameters etc.)
Surface Emissivity Techniques

- Regression *(NESDIS)*
- Minimum Variance *(CIMSS)*
- Eigenvector *(Hampton Univ.)*
IR HYPERSPECTRAL EMISSIVITY - ICE and SNOW
Sample Max/Min Mean computed from synthetic radiance sample
IR HYPERSPECTRAL EMISSIVITY - LAND
Computed from synthetic radiance sample

- All Land (averaged, 60S to 60N)
- Desert (lon=-10, lat=30, lon=25, lat=29)
- Grassland (lon=-90, lat=-80, lat=30, lat=40)
Prologue

- JCSDA is well positioned to exploit the AIRS and future Advanced Sounders in terms of
 - Assimilation science
 - Modeling science.
 - Computing power

Generally next decade of the meteorological satellite program promises to be every bit as exciting as the first, given the opportunities provided by new instruments such as AIRS, IASI, GIFTS and CrIS, modern data assimilation techniques, improving environmental modeling capacity and burgeoning computer power.

The Joint Center will play a key role in enabling the use of these satellite data from both current and future advanced systems for environmental modeling.
Summary/Conclusions

Results using AIRS hyperspectral data, within stringent current operational constraints, show significant positive impact.

Given the many opportunities for future enhancement of the assimilation system, the results indicate a considerable opportunity to improve current analysis and forecast systems through the application of hyperspectral data.

It is anticipated current results will be further enhanced through improved physical modeling, a less constrained operational environment allowing use of higher spectral and spatial resolution and cloudy data.
Summary/Conclusions

Effective exploitation of the new IR hyperspectral data about to become available from the Infrared Atmospheric Sounding Interferometer (IASI), Cross-track Infrared Sounder (CrIS), and Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instruments will further enhance analysis and forecast improvement.