A Joint Temperature, Humidity, Ozone, and SST Retrieval Processing System for IASI Sensor Data: Properties and Retrieval Performance Analysis

M. Schwaerz G. Kirchengast

ARSCliSys@WegCenter and IGAM, University of Graz, Austria

14th International TOVS Study Conference, May 24 – 31, 2005
Outline

1. **METOP – IASI**
 - METOP
 - IASI – Infrared Atmospheric Sounding Interferometer

2. **Forward Model and Retrieval**
 - The forward model RTIASI
 - The Retrieval

3. **Results**
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval

4. **Summary and Outlook**
Outline

1. METOP – IASI
 - METOP
 - IASI – Infrared Atmospheric Sounding Interferometer

2. Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval

3. Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval

4. Summary and Outlook
Outline

1. METOP – IASI
 - METOP
 - IASI – Infrared Atmospheric Sounding Interferometer

2. Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval

3. Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval

4. Summary and Outlook
Outline

1. METOP – IASI
 - METOP
 - IASI – Infrared Atmospheric Sounding Interferometer

2. Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval

3. Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval

4. Summary and Outlook
Outline

1. METOP – IASI
 - METOP
 - IASI – Infrared Atmospheric Sounding Interferometer

2. Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval

3. Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval

4. Summary and Outlook
METOP configuration

METOP – IASI
Forward Model and Retrieval Results
Summary and Outlook

METOP configuration

Source: http://www.esa.int/export/esaME/index.html

METOP specifications

- size: 17.6 m × 6.7 m × 5.4 m
- mass: 4244 kg
- power: 2010 W (eclipse)

orbit

- inclination: 98.7°
- ALTITUDE: ~830 km
- sun-sync. orbit (9:30 local time)
- >14 revolutions/day
- repeat cycle: 29 days – 412 orbits

Schwaerz, Kirchengast
ITSC 14
May 2005
Beijing, China
METOP configuration

METOP specifications
- size: 17.6 m x 6.7 m x 5.4 m
- mass: 4244 kg
- power: 2010 W (eclipse)

orbit
- inclination: 98.7°
- ALTITUDE: ~830 km
- sun-sync. orbit (9:30 local time)
- >14 revolutions/day
- repeat cycle: 29 days – 412 orbits
instruments on board of METOP

atmospheric instruments
- IASI
- AMSU - A1, A2
- ASCAT
- AVHRR
- GOME-2
- GRAS
- HIRS
- MHS

additional instruments
- A/DCS
- SARP-3
- SARR
- SEM

Source: http://www.space-technology.com/
instruments on board of METOP

additional instruments
- A/DCS
- SARP-3
- SARR
- SEM

atmospheric instruments
- IASI
- AMSU - A1, A2
- ASCAT
- AVHRR
- GOME-2
- GRAS
- HIRS
- MHS

Source: http://www.space-technology.com/
IASI – infrared atmospheric sounding interferometer

IASI characteristics

- scan type: step and dwell
- scan rate: 8 s
- pixel/views: 4
- views/scan: 30
- IFOV: 3.33° (48 km at nadir)
- swath: ±48.3° (±1026 km)
- lifetime: 5 years
- power: 200 W
- mass: 210 kg
- size: 1.2 m × 1.1 m × 1.1 m
IASI - measurement specifications

- spectral range: 645-2760 cm\(^{-1}\)
- 15.5-3.6 \(\mu\)m
- spectral res.: 0.35 - 0.5 cm\(^{-1}\)
- 8461 channels
- separated into 3 bands
- radiometric res.: 0.25 - 0.5 K
- water vapor: 1250 - 2000 cm\(^{-1}\)
- \(\text{CO}_2\): near 645 and 2325 cm\(^{-1}\)
- additional absorption of \(\text{O}_3\), \(\text{CH}_4\), \(\text{N}_2\text{O}\), \(\text{CO}\), \(\text{SO}_2\)

(a) radiances and (b) brightness temperatures of IASI simulated by RTIASI for a us.std.midlatitude summer atmosphere.
Outline

1. METOP – IASI
 - METOP
 - IASI – Infrared Atmospheric Sounding Interferometer

2. Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval

3. Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval

4. Summary and Outlook
The forward model RTIASI

RTIASI - an overview

- Simulation of the IASI measurements at 43 fixed pressure levels between 0.1 and 1013.25 hPa
- Calculation of optical depth’s via a regression scheme
- Calculation of level to space transmittances
- Solution of the radiative transfer equation to estimate brightness temperatures T_B (or radiances, respectively).
- Tangent linear and adjoint model to calculate jacobians for T, q, O_3, and SST - $\frac{\partial T_B}{\partial T}$, $\frac{\partial T_B}{\partial q}$, $\frac{\partial T_B}{\partial O_3}$, and $\frac{\partial T_B}{\partial SST}$.
The forward model reads

\[y = f(x) + \epsilon \]

- \(y, x \): measurement and state vector
- \(f \): forward model operator - jacobian matrix \(K \) times \(x \)
- \(\epsilon \): measurement error vector

The direct inverse reads

\[x_{\text{retr}} = K^{-g} y \]

- ill-conditioned problem
- over determined for \(m > n \)
the retrieval

optimal estimation algorithm

- incorporates sensibly *a priori* knowledge
- statistically optimal fusion of unbiased measurements and *a priori* data

linearized iterative optimal estimation scheme

\[x_{i+1} = x_{ap} + S_i K_i^T S_\epsilon^{-1} \left[(y - y_i) + K_i (x_i - x_{ap}) \right] \]
\[\text{with: } S_i = \left[S_{ap}^{-1} + K_i^T S_\epsilon^{-1} K_i \right]^{-1}. \]

- \(S_i, S_\epsilon, S_{ap} \): retrieval, measurement, and *a priori* error covariance matrix
- \(x_{i,i+1}, x_{ap} \): iterated (iteration index i) and *a priori* profile
The forward model RTIASI

The Retrieval

Summary and Outlook

The a priori error covariance matrix

- exponential drop off
- correlation length:
 - T: 6 km
 - q: 3 km
 - O_3: 10 km

The off diagonal elements

a priori error covariance matrices for temperature, humidity and ozone.
The forward model RTIASI

The Retrieval

Summary and Outlook

The measurement error covariance matrix

diagonal elements
- IASI level 1c noise values
- adapted to the actual brightness temperature
- +0.2 K forward model error

off diagonal elements

Correlation of the three nearest neighbor channels:
1. 0.75
2. 0.25
3. 0.04
the measurement error covariance matrix

diagonal elements
- IASI level 1c noise values
- adapted to the actual brightness temperature
- +0.2 K forward model error

off diagonal elements
correlation of the three nearest neighbor channels:
1 0.75
2 0.25
3 0.04
Outline

1. METOP – IASI
 - METOP
 - IASI – Infrared Atmospheric Sounding Interferometer

2. Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval

3. Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval

4. Summary and Outlook
calculation with the fast radiative transfer model RTIASI
superposition of radiometric noise Δy, consistent with S_ε, according to IASI level 1c noise to get quasi realistic data
channel selection

removal of channel regions

\[\begin{align*}
> 2500 \text{ cm}^{-1} & : \text{sun, inst. noise} \\
1220 - 1370 \text{ cm}^{-1} & : \text{N}_2\text{O, CH}_4, \text{SO}_2 \\
2085 - 2200 \text{ cm}^{-1} & : \text{CO, N}_2\text{O}
\end{align*} \]

\[\implies \sim 6200 \text{ channels} \]

(5)

information content theory

\[H_i = \frac{1}{2} \log_2 \left| \hat{S}_i^{-1} \hat{S}_{i-1} \right|, \]

(6)

maximum sensitivity approach

\[H = S^{-\frac{1}{2}} K, \]

(7)
true fields

METOP – IASI Forward Model and Retrieval Results

Summary and Outlook

Retrieval Setup and Channel Selection

Results of the Joint Retrieval

true fields

Schwaerz, Kirchengast

ITSC 14

May 2005

Beijing, China
a priori minus true – 24h forecast

Ap. - True Temperature Profiles

Specific Humidity Difference (Ap. - True)

Ap. - True Surface-Skin Temperature

Ozone Difference (Ap. - True)
a priori minus true – 24h forecast/ error data
a priori minus true – true perturbed
a priori minus true – true perturbed/ error data
temperature profiles – error analysis
humidity profiles – error analysis
ozone profiles – error analysis
SST – error analysis

-6 -4 -2 0 2 4 6

SST Error [K]

(a)

(b)

(c)
single parameter retrieval – temperature
single parameter retrieval – humidity
single parameter retrieval – SST

Retrieval Setup and Channel Selection
Results of the Joint Retrieval

Schwaerz, Kirchengast
ITSC 14
May 2005
Beijing, China
channel selection – a comparison

numerical efficiency

<table>
<thead>
<tr>
<th>set</th>
<th>IC</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>887</td>
<td>3.74</td>
<td>4.25</td>
</tr>
<tr>
<td>1808</td>
<td>11.25</td>
<td>13.13</td>
</tr>
</tbody>
</table>

a) IC – ~300 chan.
b) IC – ~900 chan.
c) IC – ~1800 chan.
d) MS – ~300 chan.
e) MS – ~900 chan.
f) MS – ~1800 chan.
Outline

1. METOP – IASI
 - METOP
 - IASI – Infrared Atmospheric Sounding Interferometer

2. Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval

3. Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval

4. Summary and Outlook
Summary

IASI is the most advanced infrared sounder to be launched in the near future.

The IC based channel reduction makes the retrieval efficient –
reduction from >8400 to \(\sim3.5\% \) (\(\sim300 \))

Retrieval accuracy:

- Temperature: 1 K at 1-3 km
- Humidity: 15-20% at 1-3 km
- SST: \(\sim0.1\) K
- Ozone: improvements in the stratosphere in heights with high concentration of \(\text{O}_3 \)
Summary

Summary (2)
- *a priori* data exhibit important influence from the tropopause upwards
- the joint algorithm shows a clearly improved performance compared to more specific retrieval setups
- temperature, humidity, and SST results are quite independent from the initial guess of ozone (a few 10% uncertainty level)
Outlook

Improvements:
- statistical model of the *a priori* error covariance matrices, e.g., direct use of the relevant ECMWF *a priori* covariance matrices for T and q
- usage of the newest forward model RTIASI

next steps:
- application of the algorithm to AIRS data is planned
Thank You!
Outline

5 Anhang
 EM-Spectrum
measured spectrum

GOME-2 AVHRR
HIRS
IASI
AMSU-A1, A2
ASCAT
GRAS
MHS

Source: http://www.giangrandi.ch/optics/spectrum/spectrum.shtml