Global Analysis and Characterization of AIRS/MOIDS Cloud-Clearing

Hong Zhang, H.-L. Allen Huang, Jun Li, Chian-Yi Liu, and Elisabeth Weisz
Cooperative Institute for Meteorological Satellite Studies, UW-Madison

ITSC-15
Maratea, Italy
4 October 2006
Characterization of Infrared Imager/Sounder and Infrared/Microwave Sounder Synergistic Cloud-Cleared Infrared Radiances

Summary
• To evaluate the characteristics of these cloud-cleared radiances and their potential for improvements of numerical weather prediction and cloudy sounding applications.
• Preliminary results have shown that these two approaches, though quite different in character, and processing methodology, are both effective and have certain unique characteristics and deficiencies.

2005 ITSC 14 Beijing
Case Granule Dataset Used

- 4 Granules of Collocated AIRS & MODIS Data
- MODIS 1-km Cloud Mask
- AIRS C.M. (from MODIS)
- No ancillary data used

2 Sep. 2002 AIRS Focus Day

Wisconsin Granule

17 Sep. 2003

Australia Granule

South Africa Granule

Hurricane Isabel Granule
Aqua MODIS IR SRF Overlay on AIRS Spectrum
MODIS/AIRS Synergistic Single-Channel N^* Cloud-Clearing General Principal

After Smith

\[R_c(\nu) = \frac{R_1(\nu) - N^* R_2(\nu)}{1 - N^*} \]

Where;
\[N^* = \frac{N_1}{N_2}. \]

\[N^* = \frac{srf[R_1(w)] - R_c(w)}{srf[R_2(w)] - R_c(w)} \]

\[srf[R_i(w)] = \int \theta(w, \nu) R_i(\nu) d\nu \]

\[\Sigma \{ srf[R_c(\delta\nu_j)] - R_c(\delta\nu_j) \}^2 \leq \varepsilon \]
MODIS/AIRS Synergistic Multi-Channel N* Cloud Clearing

General Principal

\[J(N^*) = \sum_i \frac{1}{\sigma_i} [(R_{M_i}^{clr} - f_i(R_v^{cc}))^2] \]

\[J(N^*) = \sum_i \frac{1}{\sigma_i} [(R_{M_i}^{clr} - f_i(R_v^1 - R_v^2 N^*)][1 - N^*])^2] \]

\[\frac{\partial J(N^*)}{N^*} = 0 \]

\[N^* = \frac{\sum_i \frac{1}{\sigma_i^2} [f_i(R_v^1) - R_{M_i}^{clr}][f_i(R_v^1) - f_i(R_v^2)]}{\sum_i \frac{1}{\sigma_i^2} [f_i(R_v^2) - R_{M_i}^{clr}][f_i(R_v^1) - f_i(R_v^2)]} \]

Li et al, 2005, IEEE-GRS
Global AIRS/MODIS Cloud Clearing Analysis

45 Days (1 Jan. to 15 Feb. 2004):

• Used by John Le Marshall in his AMS bulletin paper while only thinned and selected channels of “clear” only AIRS were assimilated

• Collocated MODIS and AIRS level 1 data

• Collocated MODIS cloud mask
Day Time

AIRS/MODIS C.C. BIAS
Day Time

AIRS Cloud clearing Global Statistics on day 20040113

Day & Land

Day & Ocean

Day & Mixed

AIRS/MODIS C.C. BIAS

Land

Ocean

Mixed
Day Time

AIRS Cloud clearing Global Statistics on day 20040121

Land

Ocean

Mixed

AIRS/MODIS C.C. BIAS
Day Time

AIRS/MODIS C.C. BIAS

Land

Ocean

Mixed
Day Time

AIRS Cloud clearing Global Statistics on day 20040207

Land

Ocean

Mixed

AIRS/MODIS C.C. BIAS
Night Time

AIRS Cloud clearing Global Statistics on day 20040104

Land

Ocean

Mixed

AIRS/MODIS C.C. BIAS
Night Time

AIRS/MODIS C.C. BIAS

Night & Land

Night & Ocean

Night & Mixed

Land

Ocean

Mixed
Night Time

AIRS/MODIS C.C. BIAS

Land

Ocean

Mixed

AIRS/MODIS C.C. BIAS
Night Time

AIRS Cloud clearing Global Statistics on day 20040124

Night & Land

Night & Ocean

Night & Mixed

AIRS/MODIS C.C. BIAS

Land

Ocean

Mixed
Night Time

AIRS Cloud clearing Global Statistics on day 20040206

Land

Ocean

Mixed

AIRS/MODIS C.C. BIAS
Night Time

AIRS/MODIS C.C. BIAS

Land

Ocean

Mixed
Global AIRS FOV Processing Statistics

AirS Cloud clearing Global Statistics on day (20040101 – 20040215)

Land

Ocean

Mixed
Global AIRS FOV Processing Statistics

AIRS Cloud clearing Global Statistics on day (20040101 – 20040215)

![Bar charts for Land, Ocean, and Mixed](image-url)

- **Land**
- **Ocean**
- **Mixed**
Global AIRS FOV Processing Statistics
(1-1-2004 to 2-15-2004)

Date (2004)

Percentage (%)

Clear Cloud-Cleared CC Failed Overcast
Global AIRS FOV Processing Statistics
(1-1-2004 to 2-15-2004)

Percentage (%)

Date (2004)

Clear (13.26%) Cloud-Cleared (20.60%) CC Failed (17.78%)
Global AIRS FOV Processing Statistics
(1-1-2004 to 2-15-2004)

- Cloud-Cleared: 20.60%
- CC Failed: 17.78%

Date (2004):

- 1-15 Jan
- 3-15 Feb
Global AIRS Cloud Clearing Statistics (20040101 -- 20040215) over land

Bias [K]

std. dev. [K]

RMSD [K]

Wavenumber [cm⁻¹]

total number = 3,568,088
Global AIRS Cloud Clearing Statistics (20040101 -- 20040215) over water

Bias [K]

total number = 4,234,135

Std. Dev. [K]

RMSD [K]

Wavenumber [cm⁻¹]
Global AIRS FOV Processing Statistics
(1-1-2004 to 2-15-2004)
Global Analysis and Characterization of AIRS/MOIDS Cloud-Clearing

Summary

45 days of collocated AIRS/MODIS global data are analyzed:
- To characterize the synergistic AIRS/MODIS cloud-clearing performance in terms of bias and RMS error using collocated MOIDS clear and near by AIRS clear data
- The performance is consistent in terms of daily statistics of successful (~21%) and unsuccessful (~18%) cloud-clearing percentage
- The performance is consistent over land or water surface when FOV to FOV scene variation is taking into account.
- The performance is also consistent at day and night time when MODIS cloud mask characteristic is taking into account.
- Quantitative cloud clearing errors (bias & RMS) are derived for assimilation and retrieval applications.
Global Analysis and Characterization of AIRS/MOIDS Cloud-Clearing

Future Work

- Deliver cloud-cleared datasets (including the associated bias & RMSE) to JCSDA and GMAO for potential assimilation of AIRS cloud-clearing radiances.
- Perform cloud-cleared radiance sounding retrievals.
- Continue to refine cloud-clearing error processing procedure to include the calculate clear radiances as the “reference truth” and to remove FOV to FOV scene in-homogeneity from the errors estimate when using near-by clear as the independent reference truth.
- Reanalyze cloud-clearing characteristic using Ver. 5 MODIS cloud mask and new AIRS/MOIDS collocation routine.
- Using Ver. 5 MOIDS cloud phase and height info to improve cloud-clearing Q.C.
Direct Broadcast & IMAPP Poster A15
International TOVS Study Conference, 15th, ITSC-15, Maratea, Italy, 4-10 October 2006
Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center,