First Result on Ozone Profile Retrieval From GOME-2 and IASI

Anton Kaifel, Roger Huckle, Martin Felder
Center for Solar Energy and Hydrogen Research (ZSW)
Baden-Württemberg
Outline

• What do we not need
• What do we need
• Collocation GOME-2 and IASI
• NNORSY-GOME-2 ozone profile retrieval
• First results on NNORSY-GOME-2/IASI
Not Needed for NNORSY

Compared to classical retrievals schemes based on Optimal Estimation

- No a-priori profiles
- No forward model
- No spectroscopic database
- No high performance computers for real-time application
Neural network input:
- selected parts of GOME-2 spectra
- selected parts of IASI spectra
- space-time info
- observation geometry
- Temperature profiles data helps
Some Results on NNORSY-GOME-2
NNORSY-GOME-2 Profile Comparison with Ozone Sonde Station

HOHENPEISSENBERG (mid latitudes)

NNORSY sonde rel. comparison
GOME-2/IASI Collocation

- GOME-2 footprints are base grid for retrieval
- Collocation in cooperation with NWP-SAF (Nigel)
- Collocation of AVHRR with GOME-2 pixels for cloud mask

Scan characteristics

<table>
<thead>
<tr>
<th></th>
<th>pixels / scan line</th>
<th>scan time [sec]</th>
<th>time / pixel [sec]</th>
<th>forward scan viewing time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IASI</td>
<td>30x4</td>
<td>8</td>
<td>0.216</td>
<td>6.48</td>
</tr>
<tr>
<td>GOME-2</td>
<td>24</td>
<td>6</td>
<td>0.1875</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Approach for GOME-2/IASI Collocation

Right hand rule for cross products

→ 3 steps for collocation

\[\mathbf{a} \times \mathbf{b} \]
GOME-2/IASI Collocation: Step 1

Cross product $\mathbf{AP1} \times \mathbf{AB}$

Cross product $\mathbf{CP1} \times \mathbf{CD}$

\rightarrow 2 resulting vectors orthogonal on pixel plain
GOME-2/IASI Collocation: Step 2

Scalar product of resulting vectors

If parallel > 0 → point is outside lines (e.g. P2)
If antiparalle < 0 → point is between lines (e.g. P1)
GOME-2/IASI Collocation: Step 3

Same procedure for vertical line pair

P2 is outside the first line pair, further investigation is therefore not necessary

Collocation is 5x faster than file reading (updated EUMETSAT readers)
Testorbit GOME-2/IASI Collocation
Testorbit GOME-2/IASI Collocation (magnified)

GOME-2/AVHRR collocation almost finished
First Results on Combined Retrieval

- Plots show relative errors on test data set
- No ECMWF temperatures were used here
- IASI improves retrieval mainly below ozone peak
- Probably obviates need for temperature profiles from NWP analyses
Conclusion

- NNORSY-GOME-2 ozone profile retrieval available
- New fast collocation scheme for GOME-2/IASI
- Collocation GOME-2 with AVHRR for cloud mask
- Combined one-step NNORSY-GOME-2/IASI retrieval improves ozone profile quality
- Easily adaptable for real-time application