A Case Study on Atlantic Tropical Cyclogenesis and Saharan Air Layer Simulated Using WRF/Chem Coupled with an AOD Data Assimilation System

Zhiquan Liu (liuz@ucar.edu), Dan Chen
National Center for Atmospheric Research, Boulder, CO, USA

Figure 1. After one-week period (28 August – 5 September 2006) for aerosol spin-up, total 550-nm AOD distribution valid at 00 UTC 5 Sep. 2006 from the (a) NO_DA and (b) DA experiments. Also shown are dust AOD ratios in red contours. Note that color scales are intentionally made different between NO_DA and DA for a better visualization. Black rectangle in (b) is defined as the Main Cyclogenesis Region (MCR).

Figure 2. MCR-averaged differences (DA - NO_DA) for (a) AOD, (b) vertical velocity, (c) temperature (color shaded) and relative humidity (contours), and (d) liquid and ice clouds as a function of height and time.

Figure 3. 10-m u-v wind vectors (m/s) and potential temperatures (shaded, K) in MCR for 120-h forecast valid at 00 UTC 10 Sep.

Figure 4. Spatial distributions of (a) 850 hPa temperature (K) and (b) 700 hPa relative humidity (%) from two experiments for 168-hr forecast valid at 00 UTC 12 Sep and the their corresponding differences. The blue circle is the selected SAL location used in Figure 6. The black solid line in the difference field is for the cross sections used in Figure 5.

Figure 5. Cross sections (along black solid line in Figure 4) of (a) temperature difference and (b) relative humidity differences of DA minus NO_DA for 168-hr forecast valid at 00 UTC 12 Sep 2006.

Figure 6. Vertical profiles of temperature (K, blue) and relative humidity (% black) at the selected SAL location (blue circles in Figure 4) from the two experiments (solid: DA, dashed: NO_DA) for 168-hr forecast valid at 00 UTC 12 Sep 2006.