Acknowledgements

Dingmin Li Initial code development.
Andrew Lorenc Later code development and documentation.

Bill Bell Help with analysis.
Fiona Smith Help with analysis.
Masashi Ujiie Comparison with other centres.
Anna Booton Orbital predictors for SSMIS.
Synopsis

- Variational bias correction (VarBC) is a system for continuously updating the bias correction applied to observations.
- VarBC has not yet been used operationally at the Met Office.
- Now extensively tested for satellite radiance observations.
- Results are excellent.
- Planned to become operational in spring 2016.
Talk Outline

• Outline of the VarBC scheme.
• Testing of VarBC.
• Summary
Outline of the VarBC scheme.
Current ‘static’ bias correction

- Based on method of Harris+Kelly.
- Bias model consists of:
 - A constant offset.
 - A scan bias correction.
 - Two thickness bias predictors.
- Fitted using ~ a month’s worth of data.
- Updated infrequently.

\[y_k^o := y_k^o - \left(c_k + s_k + \sum_{i=1}^{I_k} \beta_i^b p_{k,i} \right) \]
VarBC

- The bias correction is applied in our 1D-Var pre-processor.
- In DA an increment to the predictor coefficients is derived from the control vector:
 \[\beta' = U_\beta v^\beta \]
- Observation penalty:
 \[J_o = \frac{1}{2} \sum_k \left(\left(y_k + \sum_{i=1}^{I_k} \beta' p_{k,i} - y^o_k \right) R_k^{-1} \left(y_k + \sum_{j=1}^{I_k} \beta' p_{k,j} - y^o_k \right) \right) \]
- The amount the coefficients can change by is limited by a background term:
 \[J_\beta = \frac{1}{2} \sum_{i=1}^{I_k} \beta'^T (\beta_i) \beta'_i \]
The background error is set such that:
\[
\frac{\text{Weight of current cycle}}{\text{Weight of prior}} = \frac{m_{\text{cycle}}}{N_{\text{bgerr}}}
\]

At the Met Office:

\[
N_{\text{bgerr}} = \text{MAX}(m_{\text{avg}}, m_{\text{min}}) \left(\frac{1}{2^{\frac{1}{n}} - 1} \right)
\]

Testing with \(m_{\text{min}} = 1000\) and \(n = 8\) (2 days)
Corresponds to minimum \(N_{\text{bgerr}}\) of about 11,000

c.f. Patrik Benáček 11p.07
• Retaining point-by-point scan bias correction, (still need the static scheme to generate it.)

• Constant predictor (1).

• Two thickness predictors.

• 6 Legendre Polynomials in scan position. (4 will be used operationally)

• 10 pairs of orbital bias predictors (see next talk).
Limitations

- ‘Passive’ channels.
- Point-by-point scan bias correction.
- Observation selection.
- Currently only applies to satellite observations.
 - No plans to extend to other ob types for now.
 - Un-bias-corrected anchor observations important for excluding model bias.
Testing of VarBC
FY3C MWHS2-11
Observed-Background & Observed-Analysis

StdDev O-B
StdDev O-A
Mean O-B
Mean O-A
T+6 zonal temperature difference
850 hPa temperature difference

MI-AH605: Thalf + scan + window minus MI-AE173: Ctrl
Temperature (K)

Winter 14/15 T+6

MIN = -2.451, MAX = 2.336, MEAN = -0.315, SD = 0.205, RMS = 0.376
Zonal relative humidity difference

MI-AH605: Thalf + scan + window minus MI-AE173: Ctrl

Relative Humidity (%)

Pressure (hPa)

MIN=-3.828 MAX=1.609 MEAN=-0.079 SD=0.510 RMS=0.516

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25
Reduction in Spin Down
T850 SH

Temperature (Kelvin) at 850.0 hPa: Analysis
Southern Hemisphere (CBS area 18.75S-90S)
Equalized and Measured from 4/7/2013 00Z to 9/8/2013 18Z

Cases: Ctrl, Thalf, Thalf scan, VarBCB

Increasing Fc-Anl difference

Forecast Range

FC-Anl Mean Error
7.5 month VarBC trial and control Verification vs Analysis

T+24 H500 -7.1% in NH and -5.9% in SH

VARBC STABILITY (7.5 MONTH)
VERIFICATION VS ANALYSIS
OVERALL CHANGE IN NWP INDEX = 2.015

UK index:
• +0.1 UK index NH
• +0.1 UK index SH
• +0.3 UK index British Isles
• +0.3 UK index stations

(scoring on 6hr Precip Accum)
Daily verification against analysis + running mean

VARBC STABILITY (7.5 MONTH)
VERIFICATION VS ANALYSIS - DAILY NWP INDEX AND RUNNING MEAN

OVERALL CHANGE IN NWP INDEX = 2.015
The apparent degradations in H500 are due to cooler analyses and an increase in bias, but these are within the uncertainty of radiosonde height measurements.
AIRS window channel

Applied Bias has drifted 0.5K!
ATMS Mean O-B and Mean O-A

Static Mean O-B
VarBC Mean O-B
Static Mean O-A
VarBC Mean O-A
ATMS
Change in StdDev O-B and O-A

O-B
O-A
Summary

Distinctive features:
• Orbital bias predictors.
• Legendre Polynomial scan bias predictors.
• Bias halving time.

Results:
• Strong positive impact at the Met Office.
• Colder, drier analyses with less spin-down.
• Planned implementation in spring 2016.

Still lots to do:
• Regional models.
• Passive channels.
• Observation selection.
• Update of position-by-position scan bias.
Questions