Recent changes in the ECMWF NWP system

Mohamed Dahouri, Stephen English, Niels Bormann, Reima Eresmaa, Alan Geer, Katrin Lonitz and Peter Lean
ECMWF, Shinfield Park, Reading, UK

New model cycles

Since ITSC-19, ECMWF implemented only one new model cycle (41R1 on 12 May 2015). This cycle gave a good positive impact. It comprised several data assimilation and model changes:

- Switch to all sky mode for the assimilation of MHS (see ITSC-19 item 0.01)
- Assimilation of SSMS moisture sounding channels over land and sea-ice
- Assimilation of surface-sensitive ATMS channels over land (see ITSC-19 item 1p:12)
- Upgrade of radiance observation operator with RTTOV-11 (see ITSC-19 item 4p:03)
- Assimilation of GPS-RO with two-dimensional observation operator
- Assimilation of ASCAT in soil moisture analysis
- Assimilation of AltiKa and Cryosat altimeter wave height data
- Assimilation of high-resolution radiances
- Upgrade of inner loop resolutions of 4D-Var to T265 for each of the three iterations of the outer loops.
- Changed calculation of background error covariances from using EDA samples of perturbations from last cycle (1/3) and climatology (2/3)
- Reduction of number of iterations in 1st inner loop and use of full linear physics package

Model changes:

- New surface climate fields (land-sea mask, sub-grid orography)
- New CO2/CH4 climatologies from latest MACC-II reanalysis produced at ECMWF.
- Revised semi-Lagrangian extrapolation reducing stratospheric noise (good impact on satellite data usage)
- Revised interpolation of moist variables in the upper-troposphere/lower stratosphere (UTLS).
- Activation of the lake model (FLAKE).
- Cloud scheme change of rain evaporation, auto-conversion/accretion, riming, precipitation fraction.
- Improved representation of super cooled “freezing” rain.
- Modified convective detrainment.
- Active use of wave modified stress in coupled mode.
- Revised sea-ice minimum threshold, sea-ice roughness length and consistency between SST and sea ice concentration.

Microwave imagers

- Three microwave imagers are currently active (using the all sky approach):
 - GCOM-W1/AMSR2 (channels 7 to 11 and 13) active since 12 August 2015
 - GPM/GMI (channels 3 to 6 and 8) active since 12 August 2015.
 - FY-3B/SSMI (channels 12–14 and 16–17)
- The addition of AMSR2 and GMI improve the fit to almost all other observations (except for AMSUA – the reasons are understood)
- Decrease of geopotential Standard deviation of forecast error up to day 4
- Forecast scores for humidity appear degraded for lower troposphere up to day 4 (however increments are larger and analysis more active).

Microwave sounders

- In Cycle 41R1, MHS is used in all sky mode allowing:
 - Doubling of the observation coverage in the mid-latitude storm tracks.
 - Improvement of mid-latitude dynamical forecasting

Table 1. Channels assimilated

<table>
<thead>
<tr>
<th>AMSUA</th>
<th>MHS (all sky mode)</th>
<th>ATMS</th>
<th>SSMS (all sky mode)</th>
<th>MWHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metop-A</td>
<td>5,6,9,14</td>
<td>5-15</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>Metop-B</td>
<td>6-15</td>
<td>5,7,10,12-13</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>NOAA-15</td>
<td>6-10,14</td>
<td>6,8-14</td>
<td>4-5</td>
<td></td>
</tr>
<tr>
<td>NOAA-18</td>
<td>6-10,14</td>
<td>6-15,18-22</td>
<td>9-11</td>
<td></td>
</tr>
<tr>
<td>NOAA-19</td>
<td>6-15,18-22</td>
<td>9-11</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>AQUA</td>
<td>3-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPP</td>
<td>5-18-38</td>
<td>6-15,18-22</td>
<td>9-11</td>
<td></td>
</tr>
<tr>
<td>FY-3B</td>
<td>5-18-38</td>
<td>6-15,18-22</td>
<td>9-11</td>
<td></td>
</tr>
</tbody>
</table>

Main upcoming satellite changes (cycle 41R2)

The upcoming ECMWF model cycle 41R2 (expected to be implemented in Q1/Q2 2016) will be mainly dedicated to a significant resolution increase affecting almost all model and data assimilation components (see table 2). The cycle will also include significant satellite data assimilation changes:

- Activation of F-18 humidity sounding channels over ocean and extend all-sky assimilation to snowy land surfaces
- Situation dependent observation errors for AMSUA (see posterior p.06 by Heather Lawrence)
- Improved IASI aerosol screening (see posterior p.04 by Reima Eresmaa for Julie Letertre-Danzack)
- 25% increase of GPSRO observation errors
- Update of RTTOV coefficient files for microwave instruments (see item 2.03 by Cristiana Lupu)
- Allow Meteosat mid-height IR AMVs

Infrared sounders

- Four infrared sounders are being used:
 - IASI from METOP-A and METOP-B (since February 2014)
 - AQUA (AIRS)
 - NPP/CRIS (78 channels) activated on 22 January 2015
 - One HIRS instrument (METOP-A)

The addition of GHS (with or without the presence of AIRS) shows:

- Positive to neutral impact on forecasts.
- Slightly better fit of the background to independent observations (except for some microwave sounding channels)

Operational changes of satellite data usage (radiiances only)

- METOP-BS/MHS decontamination (8 days outage)
- AMSU-A anomaly (6 days outage) METOP-AMHS outage (3 months outage)

Acknowledgments

ECMWF gratefully acknowledge the invaluable funding from EUMETSAT and ESA and collaboration with other agencies, notably CMA, JMA, NOAA and NASA. Thanks to Simon Witter for help with the design of this poster.