1 AIRS instrument
- AIRS: Grating spectrometer sounder on EOS-AQUA, 2378 channels with spectral resolution ~0.5-2.0 cm⁻¹ from 650-2665 cm⁻¹. 1:30 am/pm orbit. AIRS operational for 13+ years, intensively validated.
- AIRS mission length entering climate scales
- AIRS stability: ~0.002 K/year (from CO₂, SST as truth)
- Clear path to connect CrIS to AIRS radiometrically (for long term climate studies)
- Climate products need error traceability
- Climate products need to be reproduced by others

2 Approach to Climate Level Products
- Decrease data volume: Random subset
- Average data (L1b gridding and binning)
- This leads to constant reproprocessing by anyone!
- Adopt OEM framework with scattering RTA
- Decrease sensitivity to unknown variables by producing L3 trends and anomalies from time derivatives of L1 radiances.
- This is not a replacement for 3x3 or single-FOV retrievals.

3 Data Set
- AIRS V7 random data (implemented by UMBC)
- ~ 1-2% of data, using only 3x3 FORs next to nadir
- Zonal averages (for now): 40 equal area latitude bins
- Each channel time series fit de-seasonalized by bi-weekly average, after which linear rate and anomaly found.
- Matched to ERA for each scene (FOV) (for SARTA TwoSlab Cloud Calcs)
- No L1c or frequency corrections!

This Work: A First Look
- No radiance binning, average it all.
- Examine error characteristics
- Examine ability to do anomaly retrievals
- It takes a few minutes or so to create L3 trend and anomaly retrievals for the whole mission!

4. Example Zonal All-Sky Rates: North Polar

5. (L) Global and (R) Hemispherical Rates

6. Example Temp (top) and Water (bottom) Anomaly -3 S to 0 S
- Climate community mostly interested in trends (and) Anomalies
- Single jacobians still used for a linear retrieval
- Anomalies >> rates. Linear retrieval OK (except ENSO??)

7. T(z) and WV(z) All-Sky rate retrievals

UMBC-AIRS (from radiance rates) and AIRS L3 (from rates of average AIRS L3 products) both see significant stratospheric cooling in Southern Hemisphere include 0.002 K/yr instr drift → UMBC retrieved d(t)/dt uncertainty ≤ 0.018 K/yr

WV(z) rate from UMBC-AIRS
WV(z) rate from ERA * avg kernel
WV(z) rate from MERRA * avg kernel
WV(z) rate from AIRS L3

WV(z) rate from UMBC-AIRS
WV(z) rate from ERA * avg kernel
WV(z) rate from MERRA * avg kernel
WV(z) rate from AIRS L3

UMBC retrieved d(WV(frac))/dt uncertainty ≤ 0.005 /yr (includes instr drift)