Level 1 processing for the Microwave Sounder on Metop-SG

Nigel Atkinson1, Niels Bormann2, Roger Randriamampianina3, Fatima Karbou4, Clemens Simmer5, Jörg Ackermann6, Sabatino Di Michele7, Srereekha Thonipparambil6, Paolo Culucchi4, Dirk Schüttemeyer7, Ville Kangas9

1Met Office, 2ECMWF, 3MET Norway, 4Météo-France, 5Univ. Bonn, 6EUMETSAT, 7ESA

The Microwave Sounder (MWS) will be a key instrument on the Metop Second Generation series of satellites, due for first launch in 2021. The MWS Science Advisory Group (SAG) has been established jointly by ESA and EUMETSAT to advise on scientific issues related to the instrument and its processing – covering both pre-launch and post-launch activities. This poster introduces the instrument and describes some novel aspects of the level 1 processing that have been proposed by the SAG members.

The Microwave Sounder onboard Metop-SG Satellite A

The MWS will provide information on atmospheric temperature and water vapour profiles, cloud liquid water, precipitation and surface properties. The MWS will contribute to primary mission objectives of the EPS-SG programme in the areas of Numerical Weather Prediction (NWP) and climate monitoring. In addition, MWS will provide services to atmospheric chemistry, operational oceanography and hydrology. The main users will be WMO real-time users, i.e. NWP centres of National Meteorological Services, and ECMWF. The requirements are documented in [1].

The MWS is a traditional cross-track scanning microwave radiometer with 24 channels from 23 GHz to 230 GHz. It is designed to give improved performance compared with its predecessors (AMSU and MHS), particularly in the areas of radiometric noise, radiometric accuracy, spatial resolution and spectral coverage (particularly the new channel at 229 GHz, for ice cloud detection). It is implemented with a single main reflector (unlike AMSU and ATMS). Designed and manufactured by Airbus UK.

The radiometric calibration equations

We assume that incoming microwave radiation is reflected off an imperfect scan mirror of reflectivity R_m where θ is the scan angle. We also assume that there is a quadratic relationship between radiance, B, and counts, C:

$$a_0 + a_1 C + a_2 C^2 = (1 - R_m) B_{REF} + R_m B_{view}$$ \hspace{1cm} (1)

where the equation is valid for the earth scenes as well as on the on-board black body (subscript bb) and the space view (SP), B_{REF} is the black-body radiance at the temperature of the reflector. There are several ways to solve this system of equations. However, we recognise that continuity with the existing AMSU/MHS approach (see [2]) is desirable – in which radiance is computed as a quadratic function of counts, and the coefficients are reported in the level 1B data. The following solution was devised, in which the new or modified terms (compared with AMSU) are ringed:

$$a_0 = B_{REF} - C_{bb} \frac{A}{G}$$

$$a_1 = \frac{A}{G} - a_2 (C_{bb} + C_{SP})$$

where $G = C_{bb} - C_{SP}$ and $A = R_m (B_{REF} - B_{bb}) - R_m (B_{SP} - B_{bb})$.

Note that A is very close to 1. R_m is to be characterised and is planned to be verified during commissioning, via a spacecraft roll manoeuvre, similar to the pitch-over conducted for Suomi-NPP, see [3]. From theory, we would expect:

$$R_{SP} = R_m^2 \quad \text{OV channels}$$

$$R_{bb} = R_m^2 \quad \text{QH channels}$$

The roll manoeuvre will also allow validation of the pre-launch measurements of antenna side lobes. The level 1 processor will take account of contamination of space views by the earth’s limb and contamination of the earth views by cold space.

The non-linear term

It is usually stated that $a_2 = \mu G$ where μ is constant over life of the instrument. Is this equation justified? Look at the receiver block diagram:

[Diagram showing receiver block diagram with parameters x, g_x, γ_x, γ_a, ADC, Feedhorn, RF section, g_y, $\text{Detector (nonlinear)}$, Video amp, gain y, Count c]

So $dC/d\theta$ is proportional to γ_x. But from eqn (1) above, it can be shown that $dC/d\theta$ is proportional to $a_2 \theta^{-1} = \mu G$ (ignore mirror reflectivity and assume a_2 is small). So $a_2 \theta^{-1}$ is proportional to γ_x. Since $G \approx \gamma_y$, $a_2 \theta^{-1}$ is proportional to $1/(G)$, i.e. where μ is constant and has dimensions of inverse counts. Only changes in γ_y matter, not the absolute value. Reported in the telemetry. This differs from the classical formula – used for many instruments!

Although nonlinearity is expected to be small, the new formula should be more accurate as the receiver ages, i.e. γ_x changes with time.

Conclusions

The MWS instrument should give significant performance benefits compared with its predecessors. The MWS SAG is in the process of preparing a Science Plan, which will be publically available soon. The SAG has made recommendations on the L1 processing approach, for inclusion in the operational ground segment, regarding the way antenna emission is built into the calibration equations. Also, it is shown that the nonlinear term, used for many instruments over the years, does not properly account for ageing of the receiver front-end.

References