Towards the improvement of the assimilation of cloudy IASI observations in Numerical Weather Prediction.

Imane Farouk, Nadia Fourrié and Vincent Guidard
CNRM/ Météo-France & CNRS
Imane.farouk@meteo.fr

ITSC-XXI: Darmstadtium, Darmstadt, Germany 29 November - 5 December 2017
Context of the study

70% of infrared hyperspectral observations
Context of the study

Observation system: IASI/MetOp

- Very high spectral resolution (0.25 cm⁻¹),
- Measures infrared radiation in 8461 channels,
- Daily coverage,
- Pixel = 12 km diameter at the nadir.

Informations:
Temperature, moisture, ozone, trace gases
Why assimilate cloudy IASI radiances?

- 80% of the pixels of the hyperspectral sounders (IASI) are affected by the presence of clouds.

- Sensitive meteorologically zones strongly correlated with the presence of clouds (McNally 2002, Fourrié and Rabier 2004).

Motivations

Need to constrain analysis in cloudy areas

The assimilation of cloudy radiances
Objectives

- Increase the amount of infrared data assimilated in the global ARPEGE forecast model.

- New developments to better assimilate the IASI cloudy radiances in the model: use of cloud microphysics to simulate and assimilate the data;

- The identification of homogeneous situations in cloudy sky potentially usable in the data assimilation.
Methodology

Cloudy sky radiative transfer model

From the model:
- Temperature profiles
- Moisture profiles
- Surface data

Radiative Transfer Model in cloudy sky
RTTOV-CLD (Hocking 2010)

Simulated cloudy radiance

Microphysical cloud parameters:
- Liquid water content (ql)
- Ice content (qi)
- Cloud Fraction

Surface channel 1271; 962.5 cm⁻¹
Methodology

Selection of homogeneous scenes with AVHRR data

- The AVHRR sensor onboard MetopA and MetopB satellites
- Measures in 5 channels (visible, near-, middle, and thermal infrared spectrum)
- Pixel = 1 km diameter at the nadir
- Pixels homogeneity, CldCover

Aggregation of AVHRR pixels (1km resolution) within the IASI FOV in homogeneous classes

For each class j and each channel i:

- Mean Radiance : L_{ij}
- Mean standard deviation : O_{ij}
- Class coverage in the IASI FOV : C_j

The application of homogeneity criteria for the selection of homogeneous scenes
Identification of well simulated cloud situations with RTTOV-CLD

- Homogeneity Criteria derived from (Martinet et al., 2013)

 - Space observations
 Use of a single infrared channel of AVHRR (11.5 μm), and definition of two homogeneity criteria, in the radiance space: **inter-class homogeneity** and **intra-class homogeneity**

 - **Relationship** between inter-class homogeneity and mean radiance < 8%

 - **Relationship** between intra-class homogeneity and mean radiance < 4%

- Space model

 - Background departure check

\[|BT_{Obs} - BT_{guess}| < 7 \text{ K} \]
Identification of well simulated cloud situations with RTTOV-CLD

- Homogeneity Criteria for cloudy sky derived from (Eresmaa, 2014)
 - Space observations
 - Use of two infrared channels 10.5 μm and 11.5 μm and definition of two criteria homogeneity in the brightness temperature space.
 - \(\sigma_4 < 0.75 \)
 - \(\sigma_5 < 0.8 \)

- Space model
 - Background departure check:
 - \(D_{\text{mean}} = \sum_{j=1}^{N} f_j D_j \)
 - where \(f_j \) is the fractional coverage of class j.
 - \(D_j \) is the distance between each class j and the background, is computed as: \(D_{\text{mean}} < 49 \text{ K}^2 \)
Bias and standard deviation (Stdv) of the differences between Background and the IASI observations

Bias and standard deviation (Stdv) of the differences between Background and the IASI observations

Homogeneity Criteria derived from (Martinet et al., 2013)

- Wavenumber [cm⁻¹]: «650-1000 cm⁻¹»
- Bias = 0.5
- Stdev = 7.45
- CC = 0.79

Homogeneity Criteria derived from (Eresmaa, 2014)

- Wavenumber [cm⁻¹]: «650-1000 cm⁻¹»
- Bias = 0.17
- Stdev = 1.36
- CC = 0.98
30 January 2017 the day on the sea

Identification of well simulated cloud situations with RTTOV-CLD

All observations

Homogeneity Criteria derived from (Martinet et al., 2013)

Homogeneity Criteria derived from (Eresmaa, 2014)

22% of observations (10% are totally clear and 6% are totally covered by clouds)

54% of observations (19% are totally covered by clouds and 10% are clear)
Identification of well simulated cloud situations with RTTOV-CLD

- Selected homogeneity criteria

- Using two infrared channels of AVHRR and definition of the inter-class homogeneity in the brightness temperature space

- Relationship between inter-class homogeneity and mean BT < 0.8 %

<table>
<thead>
<tr>
<th></th>
<th>Number of observations</th>
<th>Cloudy observations</th>
<th>Clear observations</th>
<th>Heterogeneous observations according AVHRR cloud cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>All observations</td>
<td>59040599</td>
<td>50.10%</td>
<td>12.61 %</td>
<td>37.29 %</td>
</tr>
<tr>
<td>Homogeneity Criteria</td>
<td>67.29 %</td>
<td>32.28 %</td>
<td>12.61 %</td>
<td>22.39 %</td>
</tr>
</tbody>
</table>
Identification of well simulated cloud situations with RTTOV-CLD

Selected homogeneity criteria

- **space modele**
 - Background departure check:

\[D_{\text{mean}} < 49 \, \text{K}^2 \]
Identification of well simulated cloud situations with RTTOV-CLD

- Selected homogeneity criteria

36% of observations (10% are totally clear and 11% are totally covered by clouds).
Identification of well simulated cloud situations with RTTOV-CLD

- **Selected homogeneity criteria**

 Frequency distribution of the IASI observations and the Background difference

- All observations

 - Surface Channel
 - Tropospheric water vapor Channel
 - Humidity Channel

- Selected homogeneity criteria

 - Surface Channel
 - Tropospheric water vapor Channel
 - Humidity Channel
The comparison of two methods for selecting homogeneous scenes of Martinet et al (2013) and Eresmaa (2014) shows that:

- The method of Martinet et al.(2013), improves our background departure statistics but it keeps more heterogeneous observations.

- The method from Eresmaa(2014), greatly improves our statistics, and favors more clear observations but we keep only 22% of the observations.

By applying our third selection method that is based on the homogeneous observations and the model space we obtained a good compromise between the two previous methods, selecting fewer heterogeneous observations with a bias and a standard deviation close to 0 during day and night, with a distribution of observations minus simulations very close to the Gaussian shape, by keeping 36% of observations.

Definition of observation errors for all-sky observations

Test different assimilation methods to initialize the ARPEGE model
Thank you!

Imane.farouk@meteo.fr
www.meteofrance | @meteofrance

ITSC-XXI: Darmstadtium, Darmstadt, Germany 29 November - 5 December 2017
Identification of well simulated cloud situations with RTTOV-CLD

Overview

<table>
<thead>
<tr>
<th></th>
<th>Number of observations</th>
<th>Cloudy observations</th>
<th>Clair observations</th>
<th>heterogeneus observations</th>
<th>Correlation coefficient (surface channels)</th>
<th>Bias (Surface channels) «650-1000»</th>
<th>Stdev (Surface channels) «650-1000»</th>
</tr>
</thead>
<tbody>
<tr>
<td>All observations</td>
<td>59040599</td>
<td>50%</td>
<td>12%</td>
<td>38%</td>
<td>0.79</td>
<td>0.22</td>
<td>3.02</td>
</tr>
<tr>
<td>Homogeneity Criteria of Martinet</td>
<td>54 %</td>
<td>19%</td>
<td>11%</td>
<td>24%</td>
<td>0.97</td>
<td>0.07</td>
<td>0.87</td>
</tr>
<tr>
<td>Homogeneity Criteria of Eresmaa</td>
<td>15 %</td>
<td>4%</td>
<td>8%</td>
<td>3%</td>
<td>0.99</td>
<td>0.06</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Identification of well simulated cloud situations with RTTOV-CLD

- **Selected homogeneity criteria**

 - **space observations**

 Using two infrared channel of AVHRR and definition of the **inter-class homogeneity** in the Brilliance temperature space

 - Relationship between inter-class homogeneity and mean BT < 0.8%

 - The choice of threshold for both channels by **polynomial smoothing**

68% of observations have an intercluster homogeneity less than 0.8% for channel 4 and 70% for channel 5.
Identification of well simulated cloud situations with RTTOV-CLD

- Selected homogeneity criteria
 - space modele
 - Background departure check:

90% of observations
Identification of well simulated cloud situations with RTTOV-CLD

- **Selected homogeneity criteria**
 - Background departure check:

![Graph showing selected homogeneity criteria](image)

The 21st International TOVS Study Conference (ITSC-21)