Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system

Masahiro Kazumori, Takashi Kadowaki
Numerical Prediction Division
Japan Meteorological Agency

International TOVS Study Conferences XXI, Darmstadt, Germany, 29 November - 5 December 2017
Microwave radiance observations have various information on geophysical parameters, e.g., *atmospheric temperature, water vapor, clouds, precipitation and* surface conditions.

However, present microwave Tb data assimilation (DA) is a clear-sky assimilation in the JMA global NWP system. Cloud and rain affected Tb data are not assimilated in the operational system.

Objective
Obtain water vapor information in **cloudy areas** from all-sky assimilation

Cloudy areas are sensitive to accuracy of severe weather forecasting (e.g., heavy precipitation, tropical cyclone, mid-latitude cyclone associated with convective storms)

Improvements of analysis in the cloudy areas must bring **better precipitation and tropical cyclone predictions**
All-sky MW radiance assimilation

Key components of all-sky MW radiance assimilation

1. Cloud and precipitation radiative transfer model
 RTTOV_SCATT developed by NWP-SAF in EUMETSAT

2. Cloud and precipitation-capable forecast model
 JMA global model, GSM (TL959L100) as of Nov. 2016

3. MW Radiance observations
 MW-Imagers (AMSR2, GMI, SSMIS)
 + MW Sounders (MHS, GMI)

4. Data assimilation methods
 4D-Var data assimilation + Outer-loop introduction

Cloud formation & Precipitation are non-linear phenomena.

Outer-loop iterations (trajectory updates) in the minimization of 4D-Var cost function can help to include the non-linear processes. The updates can increase QC-passed data.
Incremental 4D-Var and outer-loop

4D-Var cost function:
\[J(x) = \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b) + \frac{1}{2} (H(x) - y)^T R^{-1} (H(x) - y) + J_c \]

\(x \) is the control variable, \(x_b \) is the background state, \(y \) is the vector of observations.

Outer loop

- Initial state \(x_0 = x_b \)

- \(i = 1, 2 \)

- Departures \(d = y - H(x_b) \)

- Trajectory (low reso.)

- \(\delta x_i = 0 \)

Inner loop

- Iterative minimization algorithm
 - Low resolution linear model
 - \(J \)
 - Low resolution adjoint model
 - \(\nabla J \)

- \(x_{i+1} = x_i + S^{-1}(\delta x_i) \)

Analysis

High resolution nonlinear model forecast

A Conceptual Diagram of 4D-Var DA

In the 4D-Var analysis, cost function \(J \) is minimized. The minimization problem is solved with an iterative algorithm, tangent linear and adjoint models. Obtained analysis increments are used to make initial fields for high resolution nonlinear model forecasts.

In outer loop configuration, after the minimization, the departures and trajectory are re-computed with the nonlinear model and again new minimization problem is solved with updated QC-passed data.
Changes of the cost function in the minimization

Single minimization: TL319L100 (70 iterations)
2 loops of minimization: TL319L100 (35 iterations) + TL319L100 (35 iterations)

Non-linear effects are considered from the addition of the outer-loop.

Comparable convergence of the cost function was obtained at the end of the minimization.

Blue: J_{all}
Pink: ∇J
Green: J_b
Red: J_0

Japan Meteorological Agency
Data assimilation experiments

CNTL: Clear-sky MW imager and sounder assimilation same as JMA operational system

TEST1: All-sky MW imager + sounder assimilation

TEST2: CNTL + outer-loop

TEST3: All-sky MW imager + sounder assimilation + outer-loop

Period: 10 June – 11 October 2015

JMA global NWP system:
JMA global model (JMA-GSM) as of Nov. 2016

4D-Var DA system
- Outer model: TL969L100, 20 km horizontal resolution, 100 layers, the model top 0.01 hPa
- Inner model: TL319L100, 55 km horizontal resolution, 100 layers, the model top 0.01 hPa
- 6-hr assimilation window, Static background error covariance matrix (NMC method)

Input atmospheric profiles for RTM: T, Qv, O3, Clw, Ciw, Rain and Snow from JMA-GSM

Obs. Error Setting: Symmetric cloud index C37 (MW-Imager) and SI (MW-Sounder) (Geer and Bauer 2011, Geer et al. 2014)

QC: Gross error check. Ocean data selection for MW imager and ocean & land for MW-sounder

All-sky MW imager + sounder
- AMSR2, GMI, SSMIS F17, F18 (19V, 23V, 37V)
- GMI, MHS (NOAA, Metop) (183 GHz)
Change of STD of FG departure from CNTL

CNTL:
TEST1: all-sky MW imager+sounder
TEST2: CNTL + outer-loop
TEST3: all-sky MW imager+sounder + outer-loop

FG (First-Guess) fields (FT=3～9) of T, RH, WV were improved.

Improvements of lower level wind and upper level humidity were obtained from all-sky assimilation of MW images and sounders, respectively.
Blue color indicates reduction of forecast errors.

Reference: ECMWF analysis
Blue color indicates reduction of forecast errors.
Blue color indicates reduction of forecast errors.

Reference: ECMWF analysis
Impacts on TC track predictions

All-sky assimilation improved TC track predictions for all ocean areas.
Impacts on TC intensity predictions

TC central pressure prediction

Improved prediction at TC developing stages
The heat release from water vapor condensation is a source of TC development.
Rapid Intensification of TC was predicted in the all-sky assimilation experiment.
Water vapor analysis in cloudy conditions would be improved.

* Decrease in the central pressure of TC at least 30 hPa in a 24-hour period.
Impacts on TC intensity predictions

Enhanced water vapor contrast is analyzed. Increase of water vapor amount and strengthened vortex in the center of TC.
Enhanced Warm Core was analyzed in all-sky assimilation.

Analyzed Temperature field. 18 UTC 30 August 2015

Maximum stage
Forecast model bias issues in all-sky MW DA

- Underestimation of strong convective clouds in the JMA global model?

SAPHIR 183.31+6.8 GHz

August 14, 2016 (all-sky passive)

Model’s convective clouds are weak and broadly spread.
Model’s precipitation representation is crucial for all-sky 183 GHz humidity sounding radiance assimilation.

Meteosat-10 IR
• Development of **all-sky MW imager and sounder radiance assimilation** using JMA global DA system in progress

• Experiments of all-sky assimilation + outer-loop using JMA global DA system
 – Large positive improvements from outer loop introduction for Q, T, WV forecast fields.
 – Better fits of FG field to various observations.
 – All-sky assimilation enhanced water vapor contrast under cloudy conditions.
 • Improved TC track forecasts
 • Realistic deepening (Rapid Intensification) of TC central pressure and strong wind fields
 • Well-formed warm-core structures in the TC maximum strength stage

• Realistic water vapor analysis in cloudy areas can produce realistic TC intensification, especially in the development stages. Outer-loop introduction enhanced the trend.

• **Forecast model’s performances for convective clouds are crucial for all-sky 183 GHz humidity sounding radiance assimilation.**
Thank you for your attention.