Impact of assimilating the VIIRS-based CrIS cloud-cleared radiances on hurricane forecasts

Jun Li@, Pei Wang@, Jinlong Li@, Zhenglong Li@, Jung-Rim Lee&, Agnes Lim@, Timothy J. Schmit#, and Mitch Goldberg%,

@CIMSS, University of Wisconsin-Madison
%JPSS Program Office, NESDIS/NOAA
&Korea Meteorological Administration
#SaTellite Applications and Research (STAR), NESDIS/NOAA

The 21th International TOVS Conference (ITSC-21)
29 November – 05 December 2017, Darmstadt, Germany

Acknowledgement: This research is partly supported by JPSS Proving Ground program
Outlines

- Motivation and current status on using imager to assist handling clouds for IR sounder radiance assimilation;
- VIIRS-based CrIS cloud-cleared radiances (CCRs);
- Impact from CCRs and GOES-16 moisture on recently hurricanes;
- Summary and future work.
Using high resolution imager measurements to assist hyperspectral IR sounder radiance assimilation

1. Both instruments (sounder and imager) have good signal-to-noise ratio, have overlap spectral coverages;
2. They are comparable through convolving sounder to imager spectrally and averaging imager to sounder spatially.

Using imager for assisting IR sounder radiance assimilation:
1. IR sounder sub-pixel cloud-detection and QC for radiance assimilation;
2. Cloud-cleared radiances (CCRs) in cloudy skies for assimilation.
Current status on using imager for sounder radiance assimilation

- IR sounder sub-pixel cloud characterization has been demonstrated and recommended by ITWG to operational centers at ITSC20;
- Using collocated imager data (IR band radiances and cloud mask) to derive the sounder cloud-cleared radiances
 - AIRS/MODIS demonstrated (Wang et al. 2016);
 - Algorithm implemented for CrIS/VIIRS, demonstrated with CIMSS SDAT for recent hurricanes;
 - VIIRS-base CrIS CCRs tested in GFS by EMC (Dr. Collard and Dr. Liu) (9p.09 - Liu et al.);
 - VIIRS-based CrIS CCRs tested in RAP by ESRL;
 - Test by NRL planned (Dr. Ruston).
CIMSS near real-time Satellite Data Assimilation for Tropical storms forecasts (SDAT) (http://cimss.ssec.wisc.edu/sdat)

SDAT (http://cimss.ssec.wisc.edu/sdat)

Applications

WRF/GSI at CIMSS

End Users (NHC and Local Forecasters)

Research testbed for improving the assimilation of JPSS/GOE-R data (Sounder, ABI, radiances, TPW, AMVs, Clouds, etc.)

TC Forecast Improvement

R2O Research

Refining the Operational Path

Operational NWP models:
- EMC GFS
- EMC HWRF
- ESRL RAP
CIMSS SDAT 2017090806 00-72 hours forecasted IR-WV ABI Imager - IRMA

ABI Imager: 6.9 μm (Ch 9) 2017:09:08 06UTC – 2017:09:08 06UTC (0 hr)

Brightness Temperature

SDAT Forecast: IRMA
CrIS/VIIRS cloud clearing for CrIS radiance assimilation

- The CC method (Li et al., 2005);
- VIIRS cloud mask identifies partially cloudy FOVs (black circle);
- VIIRS radiances help quality control cloud cleared CrIS radiances;
- Only three VIIRS bands (4.05, 10.763, and 12.013 μm) used (overlapped with CrIS);
- Cloud cleared radiances very close to VIIRS clear sky radiances;
- 12.5% of partially cloudy FOVs are successfully cloud cleared for Hurricane Sandy (2012) case.

Cloud impact removed!
CrIS clear radiances: (clear FOVs + radiances not affected by clouds)

Example of 1 day CrIS coverage

CrIS CCRs: (clear + CC coverage)
Analyzing 120hr forecasts from 18 UTC 09-30 2015

How do CrIS CCRs improve tropical cyclone forecast?

CrIS original radiances assimilated at 18 UTC 09-30 (channel 130)

CrIS CCRs assimilated at 18 UTC 09-30 (channel 130)
Hurricane Joaquin is merged with the low pressure center over CONUS with assimilation of CrIS radiances (left).

Hurricane Joaquin is separated from the low pressure center over CONUS with assimilation of CrIS CCRs (right), which is verified with GOES Imager.
Experiments on Hurricane Harvey (2017)

WRF-ARW v3.6.1: 12 km horizontal resolution (400*300), 52 vertical layers from surface to 10hPa

GSI v3.3: 3D-Var Data Assimilation Method
- NAM background error covariance matrix
- Conventional Data (GTS)
- AMUS-A radiances onboard NOAA-15, NOAA-18, NOAA-19, and Metop-A
- IASI onboard Metop-A and Metop-B
- ATMS onboard Suomi-NPP
- CrIS radiances onboard Suomi-NPP
- Updated bias correction for each cycling, enhanced bias correction method in GSI
- Background and initial conditions: NCEP FNL (BG: GFS).

Hurricane Harvey (2017)
- Assimilation: Aug 23 00z to Aug 25 18z, 2017
- Forecasts: Aug 23 12z to Aug 28 18z, 2017
- Assimilation every 6 hour, 10 groups in statistics

Data:
- **Conv** from GTS;
- **POES:** AMSU-A, IASI, ATMS and CrIS;
- **CCRs:** CrIS cloud-cleared radiances (CCRs) in cloudy skies;
- **GOES-16:** Three layered precipitable water (LPW) from ABI at: 0.3 - 0.7, 0.7 - 0.9, and 0.9 – 1.0 in sigma level.

Experiments
- **CNTRL:** Conv+AMSUA+IASI+ATMS+CrIS (Conv + POES)
- **CNTRL+CCRs:** adding radiances in cloudy skies
- **CNTRL+LPW:** adding GOES-16 moisture information

Model domain

Diagram:
- 23 00z → 6h → 72h → Forecast
- 23 06z → 6h → 72h → Forecast
- Data → 6h → 72h → Forecast
- Data → 6h → 72h → Forecast
- Data → 6h → 72h → Forecast
Statistics (RMSE) from the experiments

Forecast Time (hour)

HT RMSE (km)

SLP RMSE (hPa)
25 – 30 km improvement over control

200 – 1000 hPa Temperature RMSE (K) with Radiosonde

300 – 1000 hPa Humidity RMSE (g/kg) with Radiosonde

200 – 1000 hPa U-wind RMSE (m/s) with Radiosonde

200 – 1000 hPa V-wind RMSE (m/s) with Radiosonde
Better moisture distribution
ETS scores for 06–48 hour forecasts

1 mm precipitation (and >)

10 mm precipitation (and >)

15 mm precipitation (and >)

20 mm precipitation (and >)
Heavy Precipitation (> 100 mm/6hr) over land

6-hour cumulative precipitation forecasts started at 00 UTC on 25 August 2017
Assimilate Conventional data only

Conventional data only

Conventional; LEO: IASI (Metop-A/-B), AMSUA (Metop-A/-B, NOAA-15/-18/-19), CrIS, CCRs, ATMS; GEO: LPW (GOES-16)

2017090512 – 2017091018, 5-day Irma forecasts updated 6-hourly
Operational models compare to the best-track estimate (2017090512 - 2017091018)
Summary and future work

- Assimilating CrIS CCRs show positive impact on hurricane track forecasts, could be an alternative of radiance assimilation in cloudy skies;
- QC is important, since atmosphere might be inhomogeneous within IR sounder sub-pixel in cloudy condition;
- Future work will focus on full spectral resolution CrIS from NOAA-20, improve QC on CrIS CCRs, collaborate with users on more experiments in NOAA and other models for potential operational application.