Impact of hyperspectral IR radiances on wind analyses

Kirsti Salonen and Anthony McNally

Kirsti.Salonen@ecmwf.int
Motivation

• The upcoming hyper-spectral IR instruments on geostationary satellites will provide information with high vertical and temporal resolution.

• Positive impact on wind analysis/forecasts has been demonstrated with
 – Microwave instruments in the all-sky framework (Geer et al, 2014).

• Here focus is on the current hyper-spectral IR instruments on board polar orbiting satellites.
Radiance observation in 4D-Var

Analysis is obtained by finding solution of $\nabla J(x_{T_0})=0$

$\nabla J(x_{T_0}) = B^{-1}[x_{T_0} - x_b{T_0}] + M^T H R^{-1} [HM x_{T_0} - y]$
Radiance observation in 4D-Var, impact on wind analysis

1. Adjustments in the mass fields of the atmosphere.

2. Assimilation system has freedom to adjust the wind field of the initial conditions directly.
Experimentation setup

Baseline: Conventional observations + AMSU-A

HyIR: Baseline + IASI (Metop-A, Metop-B), Cris, AIRS

All: Full observing system

12-hour sample coverage of active hyperspectral IR data

- Metop-A IASI
- Metop-B IASI
- Aqua AIRS
- Suomi-NPP Cris
RMS of increment differences (HyIR – Baseline)
Differences in the mean wind analysis (HyIR-Baseline)

850 hPa

300 hPa

-2 -1 0 1 2

-2 -1 0 1 2
RMS of increment differences (HyIR – Baseline)

12-h assimilation window

HyIR 3h in the beginning of the DA window

HyIR 3h in the end of the DA window
Wind analysis scores

- Wind analysis error: departure from the ECMWF analysis using full observing system.
- The analysis error is compared to that of Baseline experiment.
 - Wind analysis score = 0%, no improvement over the baseline experiment (conventional + AMSU-A)
 - Wind analysis score = 100%, no error with respect to the full observing system analysis

\[
RMSE_j = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [(u_i - u_i^r)^2 + (v_i - v_i^r)^2]}
\]

\[
\Delta RMSE = \frac{\sum_{j=1}^{m} (RMSE_j - RMSE_{j \, Base})}{\sum_{j=1}^{m} RMSE_{j \, Base}}
\]
Wind analysis scores

NH TR SH

Wind analysis scores (%)

Pressure (hPa)

Pressure (hPa)

Pressure (hPa)
Impact on forecasts

Wind, u v

RMS error 500 hPa vector wind

FG sdev (% normalized)

Pressure (hPa)

All HylR data 12 h DA window
HylR 3 h in the end of DA window
HylR 3 h in the beginning of the DA window

Baseline + HylR 3h in the end
Baseline + HylR
Baseline
Conclusions

• Assimilation of radiance observations in 4D-Var impact the wind analysis via
 – Adjustments in the mass fields of the atmosphere.
 – Adjustments in the wind field directly

• Hyperspectral IR observations from polar orbiting satellites have clear positive impact on wind analysis and forecasts.
 – Observations in the end of the DA window have larger impact than observations in the beginning of the window

• Upcoming hyperspectral IR instruments on geostationary satellites will provide observations up to 30 min time resolution and have enormous potential for NWP.