Combining Polar Hyper-spectral and Geostationary Multi-spectral Sounding Data – A Method to Optimize Sounding Spatial and Temporal Resolution

W. L. Smith¹,², E. Weisz¹, and J. McNabb²

¹University of Wisconsin, Madison WI, USA ; ²Hampton University, Hampton VA, USA

ABI:
- Vertical Res. 5-10 km
- Horizontal Res. 2-km
- Time Res. 5-15 min.

AIRS, IASI, CrIS:
- Vertical Res. 1-4 km
- Horizontal Res. 14-km
- Time Res. 1-7 hr.
Hampton University

Center for Atmospheric Research and Education

Direct Broadcast Processing Server Quicklook

Archive of Previous Images

Choose a Filter to display images

<table>
<thead>
<tr>
<th>Satellite Directory</th>
<th>File Type</th>
<th>Generation Date (UTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Directories</td>
<td>All File Types</td>
<td>All Dates</td>
</tr>
</tbody>
</table>

20 files match of 20 images

<table>
<thead>
<tr>
<th>File</th>
<th>Generation Time (UTC)</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>current_CRIS_f3.jpg</td>
<td>2017-12-01 07:37:33</td>
<td></td>
</tr>
<tr>
<td>current_CRIS_f2.jpg</td>
<td>2017-12-01 07:37:22</td>
<td></td>
</tr>
<tr>
<td>current_CRIS_f1.jpg</td>
<td>2017-12-01 07:37:10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cris 2017-12-01 (065503 UTC)

SAT Negative Lifted Index

SAT-RAP Negative Lifted Index

Cris 2017-12-01 (065503 UTC)

SAT 700 hPa Temp (K)

SAT-RAP 700 hPa Temp (K)
Polar-Orbiting Ultra-Spectral & Geostationary Sounders

<table>
<thead>
<tr>
<th>Instrument</th>
<th>IASI</th>
<th>CrIS</th>
<th>ABI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>Metop-A, Metop-B</td>
<td>Suomi-NPP</td>
<td>GOES-16</td>
</tr>
<tr>
<td>Type</td>
<td>Michelson Interferometer</td>
<td>Michelson Interferometer</td>
<td>Radiometer</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>0.25 cm⁻¹</td>
<td>0.625 (LW), 1.25 (MW), 2.5 cm⁻¹ (SW)</td>
<td>GOES-16</td>
</tr>
<tr>
<td>Spectral range</td>
<td>645 – 2760 cm⁻¹ (15.5 – 3.62 μm)</td>
<td>650 – 2550 cm⁻¹ (15.4 – 3.9 μm)</td>
<td>751.9 – 21276 cm⁻¹ (0.47 – 13.3 μm)</td>
</tr>
<tr>
<td>Number of Detectors/Channels</td>
<td>12 / 8461</td>
<td>27 / 1305</td>
<td>16 / 16</td>
</tr>
<tr>
<td>NEDT range</td>
<td>0.1 – 0.75 K</td>
<td>0.05 – 0.5 K</td>
<td>0.01 / 0.07</td>
</tr>
<tr>
<td>Spatial Resolution (at nadir)</td>
<td>12 km</td>
<td>14 km</td>
<td>2 km</td>
</tr>
</tbody>
</table>
PHS (CrIS/IASI) + ABI Sounding

\[
\text{ABI/PHS} = \text{ABI} (x,y,t) + \\
[\text{PHS} (x_o,y_o,t_o) - \text{ABI} (x_o,y_o,t_o)]
\]

ABI \((x,y,t)\): ABI retrieval value at location and time \((x, y, t)\)

PHS \((x_o,y_o,t_o)\): Mean of 5 reference PHS values closest to ABI location and time \((x, y, t)\)

ABI \((x_o,y_o,t_o)\): Mean of 5 reference PHS Field-of-View average ABI retrieval values closest to the ABI location and time \((x, y, t)\)

Implicit Assumption: The vertical resolution induced error of multi-spectral ABI retrievals is persistent over the time interval between the acquisition times of the high vertical resolution polar hyperspectral soundings and over the spatial scale (i.e., 14-km) of the hyperspectral sounding data.
Combining 500 hPa ABI with PHS (IASI) @ 15:00 UTC

Averaged ABI 2017-5-19 (145718)
Humidity [g/kg] at 496.6 hPa

IASI 2017-5-19 (150259)
Humidity [g/kg] at 496.6 hPa

ABI 2017-5-19 (14:57:18)
Humidity [g/kg] at 496.6 hPa

PHS+ABI 2017-5-19 (14:57:18)
Humidity [g/kg] at 496.6 hPa
Combining ABI with PHS (CrIS) @ 17:55 UTC

Averaged ABI 2017-5-19 (17:57:18) Humidity [g/kg] at 496.6 hPa

CrIS 2017-05-19 (175119) Humidity [g/kg] at 496.6 hPa

ABI 2017-5-19 (17:57:18) Humidity [g/kg] at 496.6 hPa

PHS+ABI 2017-5-19 (17:57:18) Humidity [g/kg] at 496.6 hPa
CrIS + ABI Vs Radiosondes (May 19, 2017)
IASI + ABI

Predicted

CrIS + ABI

Humidity [g/kg] at 496.6 hPa

Humidity [g/kg] at 852.8 hPa

Latitude

Longitude
PHS+ABI Time Series (MOVIE)
Humidity [g/kg] at 496.6 hPa

IASI-A + ABI
Humidity [g/kg] at 496.6 hPa
PHS+ABI 2017-5-19 (17:57:18)
Humidity [g/kg] at 496.6 hPa

IASI-B +ABI
Atmospheric Stability Change

RAP 2017-05-19 (145718)
Lifted Index [°C]

RAP 2017-05-19 (175718)
Lifted Index [°C]

PHS+ABI 2017-5-19 (14:57:18)
Lifted Index [°C]

PHS+ABI 2017-5-19 (17:57:18)
Lifted Index [°C]
HR Severe Weather Not Predicted by NWS (May 19, 2017)

Day 1 Risk
Area (sq. mi.)
Area Pop.
Some Larger Population Centers in Risk Area

ENHANCED
48,447
7,656,120
Dallas, TX...Fort Worth, TX...Arlington, TX...Plano, TX...Garland, TX...

SLIGHT
194,795
19,485,383
Columbus, OH...Oklahoma City, OK...Kansas City, MO...Tulsa, OK...Wichita, KS...

MARGINAL
294,539
67,316,656
New York, NY...Philadelphia, PA...Indianapolis, IN...Austin, TX...Baltimore, MD...
Summary and Conclusions

• Profile Retrievals from Polar Hyperspectral Sounders and Geostationary Multi-spectral Instruments to Optimize the Vertical, Horizontal, and Temporal resolution of the Satellite Sounding Product
 — Improving low altitude sounding coverage in partly cloudy areas
 — Observe spatial mesoscale details important for intense weather prediction
 — Provide high temporal resolution for predicting the onset of severe convection
 — Provide altitude-resolved water vapor imagery time sequences potentially useful for estimating 4-d wind profiles for NWP applications

• Technique Can Provide Near-Global Coverage Using be Polar Satellite Hyperspectral Sounders (e.g., IASI, CrIS, HIRAS) Data Obtained Using the International Network of Direct Broadcast Systems (e.g., DBnet) and Geostationary Satellite Multi-spectral Instruments (e.g., ABI, AHI, AMI, and SEVIRI)

• PHS + ABI is NOT a replacement for the Geo-Hyperspectral Sounder